

³Corporación Venezolana de Guayana, Técnica Minera, C.A., c/c Chilemex, Piso 2, Puerto Ordaz, Venezuela. ⁴Department of Geology, Colorado School of Mines, Golden, CO 80401. Corporación Venezolana de Guavana, Técnica Minera, SEDE CVG, Calle Guerrera, Cd. Bolívar, Venezuela,

⁶U.S. Geological Survey, 920 National Center, Reston, VA 22092.

Basement complex (Early Proterozoic)--Well-foliated granite to granodiorite gneiss. Haydeé Rincón described these rocks as migmatites on the lower Río Pasimoni (1°40' N., 66°35' W.). On the middle Río Negro (1°30' N., 66°55' W.), they are well-foliated, chloritized, quartz-rich, biotite-granite gneisses), and one description (Marcano and others, 1991) includes a "monzodiorite." These rocks are moderately magnetic without significant directional trends in the anomalies EXPLANATION OF MAP SYMBOLS - Contact--Approximately located; dashed where inferred primarily from magnetic data Buried intrusive body inferred from magnetic data ------ Fault--Linear feature visible in Side-Looking Airborne Radar; presumed to be a high-angle fault; dashed where inferred Fault--Presumed to be a transverse fault; arrows show relative movement Graben-bounding fault--Ticks point toward graben; dashed where inferred \approx Major deep-penetrating shear zone inferred from geologic mapping and radar imagery — Syncline Positively polarized, buried, linear magnetic source, presumed to be a mafic dike; where known, depth-to-top is shown in kilometers; s indicates depth-to-top is less than 1 km

Negatively polarized, buried magnetic source, presumed to be a mafic body; where known, depth-to-top is shown in kilometers; s indicates depth-to-top is less than 1 km

Deeply buried (4-8 km), dense body mapped from gravity data

Circular feature of unknown origin visible in Side-Looking Airborne Radar--In some cases may represent a volcanic

····· Axis of strong, pervasive magnetic gradient--May represent major hidden fault that is, in some cases, dike filled

INTRODUCTION

This map is one of a series of 1:500,000-scale maps that, along with several other products, stems from a cooperative agreement between the U.S. Geological Survey (USGS) and the Corporación Venezolana de Guayana, Técnica Minera, C.A. (TECMIN), a Venezuelan Governmentowned mining and mineral exploration company. The agreement covered cooperative work carried out in the Precambrian Shield of southern Venezuela during 1987-1991 and included a geologic and mineral resource inventory, technology transfer, and scientific training (Wynn and others, in press). The Precambrian Guavana Shield (Escudo de Guavana, not to be confused with the neighboring country of Guyana) includes some of the oldest known rocks in the world (Mendoza, 1977) and also covers parts of neighboring Guyana, Surinam, French Guiana, Colombia, and Brazil. In Venezuela, it underlies most of Bolívar State and all of the Amazonas Federal Territory (see index map).

INFORMATION AVAILABLE AND UTILIZED DURING MAP ASSEMBLY

An accurate geologic map is a key element in conducting a mineral resource appraisal. However, tectonic and geologic maps that had been published in Venezuela (Bellizzia and others, 1976; Pimentel de Bellizzia, 1984) did not utilize geophysical information during their compilation and therefore lack information on the critical third or buried dimension. From 1959 to 1972, the Venezuelan Ministry of Energy and Mines (MEM) contracted for a series of aeromagnetic (and later also radiometric) surveys of Venezuela that ultimately covered 75 percent of the Venezuelan Guayana Shield, including all but a tiny fraction of this quadrangle. Other organizations and institutions, among them the InterAmerican Geodetic Survey and Simon Bolívar University, have carried out gravity surveys within Venezuela (Perarnau and Graterol, 1981; Graterol, 1988). There are enough gravity stations within the quadrangle to permit the modeling of some important features. As part of its incorporating charter, TECMIN initiated in 1985 a reconnaissance geologic, hydrologic, soils, and vegetation inventory of the Amacuro Delta Federal Territory, Bolívar State, and the Amazonas Federal Territory. The new geologic information derived from the first 6 years of this 7-year program was made available to us during the compilation of this map.

Our access to the aeromagnetic data in this quadrangle was limited to computer-contoured maps; the data were not available in digital form. The aeroradiometric data were available only in interpreted form, that is, boundaries of anomalies only; the original data were not available. We began the compilation with the geologic map published by Bellizzia and others (1976). We then incorporated 1:250,000-scale Side-Looking Airborne Radar (SLAR) sheets. Gravity data were available for most of the quadrangle. These data were contoured and two zones of anomalous Bouguer gravity highs were modeled. The anomalous zones appear to be caused by deeply buried, dense bodies that, in one case, may represent the feeder or magma conduits for the Parguaza batholith. The authors also have carried out reconnaissance field mapping elsewhere in the Amazonas Federal Territory, which proved invaluable in augmenting the existing maps and integrating the geophysical information with the SLAR and geology.

METHODOLOGY OF THE MAP ASSEMBLY

This map represents a new kind of geologic interpretation of the Venezuelan Guayana Shield. It incorporates all previously published information and also utilizes the latest geologic data obtained by the inventory mapping project (Grupo Inventario) of TECMIN and all aeromagnetic and radiometric data, made available through the MEM. Geophysical information, where available, is incorporated into this map to provide information on buried features not visible in the surficial geology. Geologic boundaries are drawn in areas of little or no outcrop by using geophysical signatures (these include primarily texture; preferred strike, if any; amplitude; and spatial frequency observed in the magnetic, gravity, and SLAR data) to guide the lithologic separation.

Because the distribution of mineral resources can be controlled by geologic features such as deep faults, shear zones (single and intersecting), volcanic calderas, and intrusive bodies, the geophysical interpretive information was incorporated to make a quasi-three-dimensional representation of the geology and structure, that is a two-dimensional geologic map with elements of the third or buried dimension added that were gleaned from the geophysical data. Our intent is to present all information available, representative as much as possible of the entire upper 10 to 15 kilometers of the crust, not just the surface as in conventional geologic maps. Thin-plate tectonics and Tertiary uplift related to the Caribbean and Andean orogenies were used in interpreting the geophysical and SLAR information in producing this map.

Many granite bodies and most intermediate to mafic volcanic and intrusive bodies have sufficient magnetic susceptibility contrast with the surrounding rocks to produce substantial variations in the magnetic field measured above them. These variations are readily apparent in the aeromagnetic data of this quadrangle. Outlines for these discrete bodies are shown on the map as either dashed lines (for partially buried, larger plutons) or a line pattern (for smaller, discrete bodies). Magnetic polarization of the source bodies can be discerned in the shape of the magnetic anomaly, and this can help to separate adjacent bodies that must therefore represent separate events. In many cases, the magnetic data are of sufficient quality to permit depth-to-source calculations using the method of Vacquier and others (1951). The results are shown on the map with

numbers indicating approximate depth-to-top in kilometers where available. Several discrete features observed in the gravity data were modeled and also are incorporated in this map with approximate depth-to-top indicated in the cross section.

About 90 percent of the mapped region is heavily vegetated, and there is only one road, barely extending into the northwestern corner of the quadrangle. Away from the navigable rivers, extensive regions are accessible only by helicopter. Contrary to popular belief, there are significant outcrops inland from the rivers, because the region is largely in a state of on-going erosion, but they are not easily accessible due to the dense jungle cover. In these regions geophysical information, along with geomorphologic interpretations derived from SLAR imagery, black-andwhite photos, and LANDSAT images, are generally the only accessible sources of information about the underlying rocks.

In Venezuela, the inclination of the Earth's field is about 35° to 40° from the horizontal, and the declination ranges from -11° to -22° (west) from true north (part of this latter variation represents secular change over the past 30 years). The shallow inclination makes it difficult to interpret magnetic data directly, especially where there are closely spaced multiple sources. Because almost none of the magnetic data in Venezuela were available to us in digital form (the one exception is a 1:50,000-scale sheet of the Bochinche area in northeastern Bolívar State, which was manually digitized for experimental purposes (Wynn and others, 1989)), we could not carry out standard reduction-to-the-pole and horizontal-gradient conversions on the data. In this quadrangle, we only had access to contour maps at scales of 1:50,000, 1:100,000, and 1:200,000. This required anomaly-by-anomaly analysis to obtain geologic contacts and body outlines. These analyses are supported by a number of computer-calculated models, both experimental forward-models as well as least-squares 2-D and 2 1/2-D model fits along profiles of data digitized along flightlines from the magnetic contour maps. Interpreted boundaries and contacts were digitized using GSMAP program version 6.03 (Selner and Taylor, 1989) and compiled at a scale of 1:500,000 for incorporation in the Puerto Ayacucho map.

Compilation began with the digitization of principle and some subsidiary drainages from planimetric maps; structural features were then digitized from SLAR sheets. Owing to poor geodetic registration of the mosaicked SLAR images, local areas of the SLAR imagery had to be registered to the drainages before the structural information was digitized. Aeromagnetic data were analyzed on a sheet-by-sheet basis, and magnetic terrane boundaries and outlines of discrete sources were digitized using modeling information as a guide. These results were then compiled in the form of an interpreted geology map, that is, a map outlining discrete, SLAR- and geophysically-defined domains often not yet identified with a particular geologic unit (Cordell and Grauch, 1985; Cordell and McCafferty, 1989; Wynn and others, 1989). This map was then compared with available published and unpublished geologic data and recent field mapping by the authors working in the quadrangle to assign geologic units and assemble the correlation chart. Due to the coarse spacing of the gravity data (2-5 km typically), only deep sources could be identified and modeled. To assure consistency, boundaries were compared with neighboring maps that were being compiled simultaneously.

The authors have been fortunate to have advice from senior Venezuelan geologists and geophysicists who have shared much information with us informally during the compilation stages of our effort. These include Galo Yánez of TECMIN and the Universidad Oriente, Cíudad Bolívar; Alfredo Menéndez of Prominsur, C.A., Caracas; and Victor Graterol of the Universidad de Simon Bolívar, Caracas.

Bellizzia-G., Alirio, Pimentel-M., Nelly, and Bajo-O., R., 1976, Mapa geológico estructural de Venezuela: Caracas, Ministerio de Minas e Hidrocarburos, Dirección Geológica, scale 1:500,000 Cordell, Lindreth, and Grauch, V.J.S., 1985, Mapping basement

- p. 181-197.
- p. 621-634.
- March 1981, Resumenes, p. 24-25. -----1985, Geochronology of the basement rocks, Amazonas Territory,
- Geologie en Mijnbouw, v. 64, p. 131-143. Gaudette, H.E., Mendoza, Vicente, Hurley, P.M., and Fairbairn, H.W.,

- Hurley, P.M., Fairbairn, H.W., Gaudette, H.E., Mendoza, Vicente,
- Maroa, al suroeste del Territorio Federal Amazonas, Venezuela: CVG TECMIN Grupo Inventario internal report.
- Publicación Especial 7, v. 3, p. 2237-2270. 1981. 11 p.
- Pimentel de Bellizzia, Nelly, 1984, Mapa geológico estructural de Geología, scale 1:2,500,000.
- Selner, G.I., and Taylor, R.B., 1989, GSMAP Version 6.03: U.S.
- p. 2159-2206. Memoir 47, 151 p.
- 1989, 15 p.
- de Energía y Minas, v. 2, p. 1243-1306.

MISCELLANEOUS FIELD STUDIES MAP MF-2245

ACKNOWLEDGMENTS

REFERENCES CITED

magnetization zones from aeromagnetic data in the San Juan basin, New Mexico, in Hinze, W.J., ed., The utility of regional gravity and magnetic anomaly maps: Society of Exploration Geophysicists, Tulsa, Oklahoma.

Cordell, Lindreth, and McCafferty, A.E., 1989, A terracing operator for physical property mapping with potential field data: Geophysics, v. 54,

Gaudette, H.E., and Olszewski, W.J., 1981, Geochronology of the basement rocks, Amazonas Territory, Venezuela: I Simposium Amazonico, Puerto Ayacucho, Territorio Federal Amazonas, Venezuela,

Venezuela and the tectonic evolution of the western Guiana Shield:

1978, Geology and age of the Parguaza Rapakivi granite, Venezuela: Geological Society of America Bulletin, v. 89, p. 1335-1340. Ghosh, Santos, 1985, Geology of the Roraima Group and its implications:

I Simposium Amazonico, Caracas, Publicación Especial 10, p. 31-50. Graterol, Victor, 1988, Mapa de anomalía de Bouguer de la República de Venezuela: Caracas, Simon Bolívar University, scale 1:2,000,000.

Martín, Cecilia, and Espejo, Aníbal, 1977, Progress report on Rb-Sr age dating in the northern Guayana Shield, in Memoria de la Segundo [II] Congreso Latinoamericano de Geología, Caracas, November 11-16, 1973: Venezuela, Ministerio de Energía y Minas, Dirección de Geología, Boletin de Geología, Publicación Especial 7, v. 4, p. 3035-3044. Marcano, Iris, Lugo, Elis, and Rivero, Nelson, 1991, Geología geomorfología de la frontera con Colombia, entre la Piedra de Cocuy y

Mendoza-S., Vicente, 1977, Evolución tectónica del Escudo de Guayana, in Petzall, C., ed., Memoria de la Segundo [II] Congreso Latinoamericano de Geología, Caracas, November 11-16, 1973: Venezuela, Ministerio de Energía y Minas, Dirección de Geología, Boletin de Geología,

Perarnau-M., A., and Graterol, Victor, 1981, Red Gravimetrica Amazonas: I Symposium Amazonico, Puerto Ayacucho, Venezuela, March 22-26,

Venezuela: Caracas, Ministerio de Energía y Minas, Dirección de

Geological Survey Open-File Report 89-373B, 2 diskettes, 144-p. text. Sidder, G.B., and Mendoza-S., Vicente, 1991, Geology of the Venezuelan Guayana Shield and its relation to the entire Guayana Shield: U.S. Geological Survey Open-File Report 91-141, 59 p., 2 pls.

Teggin, D.E., Martínez, M., and Palacios, G., 1985, Un estudio prelimina de las diabasas del Estado Bolívar, Venezuela, in Espejo, C., Aníbal, Ríos-F.,J.H., Pimentel de Bellizzia, Nelly, and Pardo, A.S., eds., Petrología, geoquímica, y geocronología: VI Congreso Geológico Venezolano, Caracas, September 29-October 6, 1985, Memoria, v. 4,

Vacquier, V., Steenland, N.C., Henderson, R.G., and Zeitz, I., 1951, Interpretation of aeromagnetic maps: Geological Society of America

Wynn, J.C., McCafferty, A.E., and Salazar, Edison, 1989, Geologic information derived from digital aeromagnetic data: Proceedings Volume, Simposio Sudamerica de COGEODATA, Caracas, April 20-23

Wynn, J.C., Sidder, G.B., Gray, Floyd, Page, N.J, and Mendoza Vicente, in press, The cooperative project between the U.S. Geological Survey and Corporación Venezolana de Guayana, Técnica Minera, C.A., in the Venezuelan Guayana Shield, Estado Bolívar and Estado Amazonas, Venezuela, in Sidder, G.B., Garcia, Andres, Stoeser, J.W., Page N.J, and Wynn, J.C., eds., The geology and mineral deposits of the Venezuelan Guayana Shield: U.S. Geological Survey Bulletin. Yánez, Galo, 1985, Geología y geomorfología del Grupo Roraima en el sureste de Venezuela, in Espejo, C., Aníbal, Ríos-F., J.H., Pimentel de Bellizzia, Nelly, and Pardo, A.S., eds., Petrología, geoquímica, y geocronología: VI Congreso Geológico Venezolano, Caracas, Ministerio

> publication is for descriptive purposes only and does not imply endorsement by the U.S. Government

For sale by U.S. Geological Survey, Map Distribution, Box 25286, Federal Center, Denver, CO 80225