
Brief Communication 

Published: 2024-11-21 

https://doi.org/10.20935/AcadEnvSci7419 

1School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia. 

*email: milton.speer@uts.edu.au 

ACADEMIA ENVIRONMENTAL SCIENCES AND SUSTAINABILITY 2024, 1 1 of 6 

Machine learning suggests climate and seasonal 
definitions should change under global warming 
Milton Speer1,*, Lance Leslie1 

Academic Editor: Supriyo Chakraborty 

Abstract 

Extreme and unseasonal temperature and precipitation events have increased worldwide. The greater frequency and variability of 

floods, heatwaves, and droughts challenge traditional definitions of climate periods as 30-year means. Machine learning (ML) studies, 

focusing on southern Australia, identified the dominant attributes of these precipitation and temperature events. The attributes are 

both local and remote climate drivers, amplified by global warming. Their impacts include longer, hotter warm seasons and shorter, 

drier wet seasons in Australia’s southern Mediterranean climate regions. In contrast, flooding has increased in coastal eastern 

Australia. The poleward contraction of mid-latitude westerly winds is a readily identifiable contributor. Improvements in climate 

models are expected to more accurately predict future phases of climate drivers. Because global warming is not uniform across the 

Earth’s surface, the revised definitions of climate will vary by region. In this work, we chose one clear example that supports the need 

for re-considering climate periods. 
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1. Introduction 

Since 2019, the term “unprecedented” has been used repetitively 

as frequent heatwaves, droughts, and associated bushfires have 

taken many lives and destroyed much property in southern and 

eastern Australia. Globally, in 2023 and 2024, long-lasting, 

deadly heatwaves struck South and East Asia, the United States, 

southern West Africa, and parts of Central and South America. 

Devastating floods that occurred in numerous countries also 

have been described as “unprecedented.” 

In this study, we focus on southern coastal Australia, which has 

suffered extreme heatwaves and droughts. Machine learning 

(ML) studies by the authors revealed an increased frequency of 

unseasonable heatwaves and droughts. These findings have 

raised questions concerning the applicability of existing defini-

tions of climatological standard norms, which have implemented 

averaging over 30 consecutive years, as defined by the World 

Meteorological Organization (WMO) [1]. 

Worldwide, extreme and record temperature and rainfall events 

have increased markedly in the past two decades, causing a heavy 

human and economic toll. Between 1980 and 1999, 4,212 disas-

ters linked to natural hazards were observed worldwide, claiming 

approximately 1.19 million lives and affecting 3.25 billion people, 

resulting in economic losses of approximately US$1.63 trillion 

[2]. However, between 2000 and 2019, the major natural disaster 

events almost doubled, to 7,348, claiming 1.23 million lives and 

affecting 4.2 billion people (many on more than one occasion). 

The global economic cost also doubled, increasing to US$2.97 

trillion [2]. Much of the increased toll is explained by increased 

climate-related disasters, including extreme weather events. 

These increased from 3,656 climate-related events in the 1980–
1999 period to 6,681 climate-related disasters in the 2000–2019 

period [2]. Floods and storms were the most prevalent events, 

and the annual number of major floods more than doubled from 

1,389 to 3,254 in the past two decades worldwide [2]. 

Recently, the climatological standard normals were challenged 

over their applicability to temperature and precipitation tem-

poral patterns in New Zealand [3]. Srinivasan et al. highlight how 

fixed-period temperature and precipitation normals do not 

reflect the reality that climate states are increasingly influenced 

by decadal variability, during the recent accelerated global 

warming (GW) period since the early to middle 1990s [3]. 

The examples from coastal southern Australia highlight the influ-

ence of the recent poleward contraction of the Antarctic Polar 

Vortex (APV) and, consequently, the Southern Hemisphere (SH) 

mid-latitude westerly wind belt. This critical shift was revealed 

by ML to be due to GW, together with its complex interactions 

with local and remote climate drivers [4]. Extremes in precipita-

tion amounts have resulted in large monthly and seasonal 

variability and, in some cases, significant changes in their means. 

However, GW often amplifies or diminishes the impacts of 

multiple climate driver phases within a quasi-decadal period [4], 
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thereby resulting in a reduction of information when averaged 

over the traditional period of 30 consecutive years. It is more 

appropriate now to employ the available WMO averages in the 

form of the mean of monthly values of climatological data, which 

can be monthly means or totals, over any specified time period 

[5]. In addition, the WMO’s use of period averages, which are 

averages of climatological data computed for any period of at 

least 10 years, would also be highly valuable [5]. 

2. The role of the Antarctic Polar Vortex 

The APV is a stratospheric wind pattern that extends down to the 

troposphere and is caused by the temperature difference between 

the cold pole and the warm region of the lower latitudes. The APV 

has a very consistent, elongated, average seasonal and annual 

shape owing to the lack of mountains in the mid-latitudes of the 

SH in contrast to the Northern Hemisphere (NH), where the 

continents of Europe/Asia and North America account for much 

of the observed waviness in the APV. 

In recent decades, the APV has strengthened and contracted 

poleward from the high mid-latitudes, noticeably in the cool (wet) 

season in Australia/New Zealand longitudes, by about 5° latitude 

[6]. Synoptically, it is manifested as anomalous low pressure in 

South American longitudes near Antarctica and anomalous high 

pressure in the mid-latitudes of Australian longitudes. Previously, 

the polar jet was located further north in the mid-latitudes and low-

pressure systems and interacted more dynamically with the 

branches of the Subtropical Jet Stream (STJ) in the region of the 

upper troposphere over Australia (Figure 1). 

Consequently, some SH Mediterranean climate regimes, includ-

ing those in southern coastal Australia, have experienced 

dramatic reductions in their cool (wet) season rainfall means. 

Notably, Southwestern Australia has experienced a devastating 

decline in cool (wet) season rainfall of approximately 30% since 

1970, particularly over the past two decades (Figure 2a) [7]. The 

decrease in rainfall has been exacerbated by increasing warm 

(dry) maximum temperatures (TMax) and mean temperatures 

over the same periods (Figure 2b) [8]. The impact of decreasing 

rainfall and increasing maximum and mean temperatures on 

available water supply, agriculture, and the natural environment 

has been acute, especially during the recent drought periods 

2017–2020 and 2023–2024. 

2.1. Southern versus eastern Australian coastal 

impacts 

During the Australian cool (wet) season from May to October, as 

defined in [4], there are contrasting recent impacts on the south-

ern coast compared to the east coast. Two multi-year La Niña 

phases (2010–2012 and 2020–2022) have impacted the eastern 

half of Australia and resulted in flood-producing rains, causing 

loss of life and infrastructure. In these La Niña phases, there were 

persistent, moisture-laden, onshore winds over the east coast. 

During the 2020–2022 La Niña, the moisture was present not 

only in spring and summer but also during the cool (wet) season. 

However, over southern coastal Australia, the mid-latitude west-

erly winds that typically produce rainfall during the cool season 

were located well south of the Australia, resulting in the recent 

drought of 2017–2019 [9] and flash drought of 2023–2024 [10]. 

This confirms rainfall changes over Southwestern Australia and 

their association to the Southern Annular Mode (SAM) and El 

Nino Southern Oscillation (ENSO) described in [11]. 

 

Figure 1 • (a) National Centers for Environmental Prediction 

(NCEP)/National Center for Atmospheric Research (NCAR) 

reanalysis derived 300 hPa negative gph composite anomaly 

from April to September in 1970–1996 (1991–2020 climatology) 

around the SH mid-latitudes, indicating favored areas for low-

pressure rain-bearing systems; (b) NCEP/NCAR reanalysis 

derived 300 hPa positive gph composite anomaly from April to 

September in 1997–2023 (1991–2020 climatology) around the 

SH mid-latitudes and weakened negative anomalies around 

Antarctica, indicating a poleward contraction of the westerly 

wind regime that supports low-pressure rain-bearing systems. 

2.2. Machine Learning shows how climate drivers 

impact Australia’s southern coastal regions 

ML studies focusing on both southwest and southeast coastal 

Australia revealed that the amplification attributes of the 

observed rainfall and temperature patterns are the same. Unsur-

prisingly, the SAM has been a dominant attribute for precipita-

tion deficits in recent decades in the southern coastal Australian 

region. Negative SAM in South American longitudes, owing to 

the strong APV in that region, has been rendered neutral by 

strong positive SAM in Australian/New Zealand longitudes. The 

resulting contraction poleward of mid-latitude westerly zonal 

winds and frontal systems has decreased cool-season precipita-

tion in southern coastal Australia. 
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Figure 2 • (a) Annual rainfall anomaly, relative to 1961–1990, for Southwestern Australia (1900–2023) showing decline from 1970, 

especially from 1990. (b) Annual mean temperature anomaly for Southwestern Australia (1900–2023) showing decline from 1970, 

especially since the mid-1990s. 

In contrast, there is increased atmospheric moisture availability 

from ENSO-related attributes and higher sea-surface temperatures 

(SSTs) off the east coast of Australia due to the presence of onshore 

winds. The increased atmospheric moisture has generated 

anomalous heavy rainfall in both warm and cool seasons in coastal 

and inland eastern Australia. 

The reduced rainfall over southern coastal Australia has been 

accompanied by a notable lack of extreme rainfall. As a result of the 

tropospheric circulation changes described previously, southern 

Australian coastal areas facing the Southern Ocean lie in a rain 

shadow of relatively high topography from the north and east, 

compared to the rest of the continent. Predominantly easterly winds 

in Southwestern Australia are dry as they are far from any ocean 

moisture source that affects the east coast and too far south from a 

regular, northern moisture source. 

3. Machine learning techniques 
employed 
The ML techniques employed in this study for both TMax and 

precipitation include a correlation-based feature selection with 

greedy hill climbing, augmented with a backtracking facility 

(CfsBF) [12], and wrapper subset evaluation [13] applied to 

various classifiers: linear regression (LRBF), neural network 

(NNBF), support vector regression (SVRBF), and random forest 

(RFBF). A second group of techniques used classifier subset 

selection (CS) [14] with each of the classifiers (LRCS, NNCS, 

SVRCS, RFCS). The final attribute evaluator was a CS using the 

same evaluators, with a technique applied to the attribute subsets 

(LRGr, NNGr, SVRGr, RFGr), described in [15]. 

4. Perth maximum temperature 
attribute selection 
Perth is a large, representative city for southwest coastal Aus-

tralia. Perth has a Mediterranean climate, with hot, dry, warm 

seasons (November–April) and wet cool seasons (May–October). 

Importantly, Perth has a long, continuous data record of daily 

and monthly temperature and precipitation. The known climate 

drivers are the global temperature time series and time series of 

climate indices such as the Dipole Mode Index (DMI), Southern 

Oscillation Index (SOI), Niño 3, Niño 4, Pacific Decadal Oscilla-

tion (PDO), SAM, Atlantic Meridional Oscillation (AMO), North 

Pacific Index (NPI), and Interdecadal Pacific Oscillation (IPO) 

[16]. 

It is well known that most heat waves across southwest coastal 

Australia occur under prolonged strong dry easterly winds [17]. The 

impact of climate change was determined from permutation testing 

of mean maximum temperature (TMax) differences between the 20-

year periods 1979–1998 and 1999–2018. Attribution employed a set 

of four ML techniques: linear regression (LR) [18], support vector 

regression (SVR) [19], artificial neural network (NN) [20], and 

random forest (RF) [21]. Data for the 1910–1981 period were used to 

determine possible attributes. 

For the Perth maximum temperature (TMax) time series, the LR 

model that performed best contained the attributes GlobalT (GT), 

Niño 4, and DMI (or IOD), as shown in Table 1. NN uses the same 

attributes as LR, whereas SVR uses GT, PDO, and DMI. RF uses GT 

and DMI. For the precipitation predictions, LR uses NPI, SOI, and 

SAM; NN uses SOI and SAM; SVM uses IPO, SOI, SAM, Niño 

4×SAM, and DMI×SAM; and RF uses PDO and SAM, as shown in 

Table 2. The six most dominant attributes for TMax and 

precipitation predictions evaluated in all methods are shown in 

Tables 1 and 2 [16]. By far, the most dominant attribute for Perth 

maximum temperature prediction is GT, as given in Table 1, 

followed by DMI, and then PDO, AMO, NPI, and SAM. No 

combinations of climate drivers, except Niño 4, appear in more than 

30% of the folds. 
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Table 1 • Attribute selection for 13 different methods for maximum temperature prediction in Perth 

Attribute/method Cfs 

BF 

LR 

BF 

NN 

BF 

SVR 

BF 

RF 

BF 

LR 

CS 

NN 

CS 

SVR 

CS 

RF 

CS 

LR 

Gr 

NN 

Gr 

SVR 

Gr 

RF 

Gr 

Mean 

GT 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

NPI 0 0 0 30 70 10 90 70 90 0 0 30 70 35.4 

AMO 0 20 20 0 80 40 100 80 50 20 10 10 70 38.5 

PDO 0 30 30 60 10 90 80 80 0 30 30 50 10 39.2 

DMI 80 80 50 90 20 90 70 100 20 80 30 90 20 63.1 

SAM 0 10 40 80 0 20 40 60 100 10 30 50 0 33.8 

Mean 15 16.5 18 30.5 18.5 38 62 74 25 15.5 15 24 18  

Standard Dev. 30 29.4 24.8 30.9 30.8 39.2 21.2 22.6 35.5 28.7 23.2 30.5 29.7  

The percentage of folds selecting the attribute is shown for each of the 13 machine learning methods (columns 2–14). Statistics (mean, standard deviation) for 

each column are shown. The mean percentage of folds for each attribute is shown in column 15. Cfs, correlation-based feature selection; BF, backtracking facility; 

LR, linear regression; NN, neural network; SVR, support vector regression; RF, random forest; CS, classifier subset selection; GT, GlobalT; NPI, North Pacific 

Index; AMO, Atlantic Meridional Oscillation; PDO, Pacific Decadal Oscillation; DMI, Dipole Mode Index; SAM, Southern Annular Mode. 

Table 2 • Attribute selection for 13 different methods for precipitation prediction in Perth 

Attribute/method Cfs 

BF 

LR 

BF 

NN 

BF 

SVR 

BF 

RF 

BF 

LR 

CS 

NN 

CS 

SVR 

CS 

RF 

CS 

LR 

Gr 

NN 

Gr 

SVR 

Gr 

RF 

Gr 

Mean 

NPI 0 20 0 10 0 90 100 90 0 90 30 70 0 38.5 

Niño 3 0 0 10 30 90 10 60 80 90 0 30 40 50 37.7 

SOI 70 90 50 100 20 100 100 100 20 100 90 100 30 74.6 

SAM 100 80 80 100 90 100 100 100 90 100 90 100 90 93.8 

Niño 4×SAM 0 10 10 10 50 30 80 80 50 30 50 60 10 36.2 

DMI×SAM 0 0 20 0 10 50 100 90 10 50 60 60 0 34.6 

Mean 26.7 12.9 13.3 20.5 24.3 21.4 86.2 69.0 24.3 20.5 37.6 44.3 15.7  

Standard Dev. 39.9 25.5 24.8 34.6 28.4 34.5 14.0 21.7 28.4 35.0 24.9 27.3 21.8  

The percentage of folds selecting the attribute is shown for each of the 13 machine learning methods (columns 2–14). Statistics (mean, standard deviation) for 

each column are shown. The mean percentage of folds for each attribute is shown in column 15.Cfs, correlation-based feature selection; BF, backtracking facility; 

LR, linear regression; NN, neural network; SVR, support vector regression; RF, random forest; CS, classifier subset selection; NPI, North Pacific Index; SOI, 

Southern Oscillation Index; SAM, Southern Annular Mode; DMI, Dipole Mode Index. 

5. Perth precipitation attribute selection 
The precipitation analysis (Table 2) used the same feature selection 

techniques as for temperature, with sea surface temperature 

anomalies near Perth (NPI) being an additional potential attribute. 

The six most relevant Perth precipitation attributes selected by the 

ML techniques are shown in Table 2. By far, the most dominant 

attribute is SAM, which appears in over 90% of the folds. SAM also 

appears in combination with Niño 4 and DMI. Finally, NPI, Niño 3, 

and SOI are the next three most prominent attributes [16]. 

6. Conclusions 

In recent decades, there has been a glaring disconnect between 

the current definition of climate periods as the means of 30 con-

secutive years and the more appropriate means of decadal or 

shorter periods. It is generally known now that GW and climate 

impacts have accelerated since the 1990s. As a result, global 

climate regimes now are increasingly being driven by GW, 

modulated by the phases of climate drivers relevant to the 

location of interest. Using the “Mediterranean climate” of 

southern coastal Australia as an example, we demonstrate how 

the means and variances of maximum temperature and pre-

cipitation time series can change dramatically on interdecadal, or 

even shorter, temporal spans. These rapid temporal changes 

render the means of 30 consecutive years as no longer being 

representative of climate periods. The coastal and near-coastal 

regions of southern Australia under threat in future. If the three 

largest southern coastal cities of Perth, Adelaide, and Melbourne 

are included, the region accounts for over 35% of Australia’s total 

population, in addition to providing fertile land for grazing, 

farming, energy production, and export and import facilities. 

Finally, our recent work has emphasized the need for a combined 

statistical model approach to climate prediction [10, 22]. Climate 

models are needed to predict the future phases of the climate 

drivers for which ML techniques can be used to project the future 

climate states. A new type of hybrid ML–General Circulation 

Model (GCM), termed “Neural GCMs,” has been developed for 

weather and climate prediction [23]. It has shown promise, and 

hopefully this generation of GCMs can incorporate ML tech-

niques that consider nonstationary time series such as tempera-

ture and precipitation, which have become nonstationary due to 
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accelerated GW in recent decades. GW is not uniform across the 

Earth’s surface, and hence the revised definitions of climate 

would vary by region. However, there are numerous examples of 

the need for a changed definition of a regional climate. We chose 

one very clear supporting example in our study. 
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