INTERPRETATION OF THE SOIL GEOCHEMICAL EXPRESSION OF THE MINERALIZATION

WITHIN THE EL CALLAO GOLD MINING DISTRICT, VENEZUELA

ARTHUR LAKES LIBRARY COLORADO SCHOOL OF MINES GOLDEN, COLORADO

By

Jean Pasquali Z.

A Thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geochemistry.

Ilasqua . Signed:___ Student

ARTHUR LAKES LIBRARY COLORADO SCHOOL OF MINES GOLDEN, COLORADO

Golden, Colorado Date: <u>April 26</u>, 1972

Approved: Thesis Advisor Head of Department

Golden, Colorado

Date: Apr. / 26 , 1972

ABSTRACT

The surface geochemical expression of the gold mineralization within El Callao mining district has been studied.

Soil anomalies formed in relation to the mineralization include Au, Ag, Pb, and Zn if the dissection level of the present surface cuts the region of gold deposition. If the present surface dissects the mineralization much above the region of Au deposition, soil anomalies include Mn, V, and As. Hg, on the other hand, is common to all levels of dissection.

The environments of jungle and savanna do not essentially alter the mineralization pattern in soils if care is taken not to sample lateritic crusts.

Previously unknown geochemical anomalies are interpreted as to their spatial relationship with respect to Au deposition. Two anomalies are within the Au deposition zone, 18 are somewhat above it, and 2 are far above it.

Geological data taken from the literature, combined with detailed field observations, analytical results, and chemical principles have been used to propose a dispersion model for hydrothermal deposits in general, where the most important elements are deposited in the order Au, Ag, Hg, Cu, Zn, Pb, As, Mn and V going from high to low temperature

iii

and/or ionic strength of the ore solutions. The dispersion model is in general agreement with a model postulated for epithermal gold deposits of Siberia, and has been extended to the elements V and Mn, which make it more useful for regional exploration.

Approximately 600 samples of rocks and soils have been analyzed for Be, W, Bi, Mo, Sn, Hg, Au, Ag, Cu, Co, Ni, Pb, Zn, As, Mn and V by optical emission spectrography, and approximately 150 samples were analyzed for Hg and Au by atomic absorption spectrometry.

Further work in the theoretical and economical aspects of the study is suggested.

TABLE OF CONTENTS

- -----

	page
ACKNOWLEDGMENTS	ix
INTRODUCTION	l
REGIONAL GEOLOGY	3
Introduction	3
Imataca Province	3
Pastora Province	5
El Callao	8
Cicapra	8
Yuruary	9
Caballape	9
Supamo	9
Roraima Province	10
Younger Rocks	10
GOLD DEPOSITS	12
PREVIOUS GEOCHEMICAL WORK	15
DISCUSSION AND INTERPRETATION OF RESULTS	18
Traverses	18
Yuruary-El Peru-Mocupia	18
Laguna Dike	22

	page
Puente de El Callao	23
Pela Bollo	24
Maestre Vein	25
La Culebra	27
Quebrada de Oro	28
Carichapo Fault Zone	29
Weathering	31
Dissection Levels	32
Theoretical Considerations	39
Water at high temperatures	39
Polar-covalent bonds	40
ANOMALIES OF ECONOMIC IMPORTANCE	44
CONCLUSIONS	46
RECOMMENDATIONS	48
Field	48
Laboratory	48
APPENDIX	50
Collection of Samples	50
Analytical Methods	51
Presentation of Data	53
Analytical Background Values for the El Callao Area. Table.	54
SELECTED REFERENCES	56

ربيد د

LIST OF ILLUSTRATIONS AND DATA

~ .

		locatio	n
Figure 1: Ge	ologic provinces of south-eastern Venezuela	page	4
Figure 2: St	ratigraphic relationships within the Pastora		
Pr	ovince	page	7
Figure 3: Sc	hematic representation of the relative posi-		
ti	ons of maximum concentration of elements in		
a	hydrothermal system	page	34
Figure 4: Ge	neralized soil anomaly over mineralized vein		
di	ssected within zone of Au deposition	page	35
Figure 5: Ge	neralized soil anomaly over mineralized vein		
di	ssected just above zone of Au deposition	page	36
Figure 6: Ge	neralized soil anomaly over mineralized vein		
di	ssected well above zone of Au deposition	page	37
Graph No. 1:	Yuruary-El Peru-Mocupia	back pock	et
Graph No. 2:	Puente de El Callao	back pock	et
Graph No. 3:	Laguna Dike	back pock	et
Graph No. 4:	Pela Bollo	back pock	et
Graph No. 5:	Maestre Vein	back pock	et
Graph No. 6:	La Culebra	back pock	et
Graph No. 7:	Quebrada de ^O ro	back pock	et
Graph No. 8:	Carichapo Fault Zone	back pock	et

.

Compute	er print	out of	data	••••••	back pocket
Plate	••••				back pocket

ACKNOWLEDGEMENTS

The author wishes to acknowledge all persons that contributed to the realization of this thesis. If a fairly complete list of people and institutions is prepared, and their contributions described in detail, it would take a small book, and an entertaining one at that. In the interest of brevity only those that had a more direct influence will be mentioned.

The Ministerio de Minas e Hidrocarburos of Venezuela gave full support to the author in the form of a scholarship. The cost of the field work was paid by the Division de Estudios of the ^Direccion de Geologia of the Ministry, and the Division de Geologia Economica, and Recursos Minerales permitted the use of their field camps.

Most laboratory work was done at the laboratory of the Division de Estudios, whose head, Geol. Cecilia Martin-Bellizzia, beside granting permission made technical help available to the author; there, Geol. Pablo Klar and Juana Maria Iturralde de Arocena were helpful in setting up the emission spectrography method. Some atomic absorption work was done at the Centro de Evaluaciones of the Ministry, and the permission, help, and encouragement given by its director, Dr. Jesus R. Gonzalez Escobar, is gladly acknowledged. The film strips were read at the laboratory of the analytical section of the Escuela de Quimica of the Uni-

ix

versidad Central de Venezuela, and the author is grateful for the use of the facilities and the patience displayed at his interference with their customary activities.

In the field the author was assisted by the Geological Technician Rafael Aranguren; and he benefited from discussions with the geologists Alfredo Menendez V. de V., Nesin Benaim, and Julio Vasquez who have worked the area.

Mister Raul Borges of the Direccion de Geologia has kindly prepared for the author a map of distribution of jungle and savanna within the area studied that, although it is not included in the thesis, is proof of care, dedication, and artistic ability.

Mister Eugenio Locher of the Direccion de Minas of the Ministry has allowed the author free access to his materials of a book on gold in Venezuela that is in the preparation stage.

The author is pleased to acknowledge the helpful suggestions contributed by the members of his doctoral committee. He is also indebted to Prof. John Williams for courageously attempting to establish some rigor in the author's thinking which is so necessary in chemical thermodynamics; and to Prof. Dean Dickerhoof for his attemts to teach the author some coordination chemistry and his patience in considering the author's numerous questions.

Fellow graduate students of the Chemistry Department have contributed substantially by clearly demonstrating how very little can be asserted with confidence. Allan Reid and Walrave Jansen are thanked for their invaluable help with the computer work that appears in the thesis.

х

Special gratitude is felt for Prof. Ramon Bisque, thesis director, for his ability and willingness to allow a student to think without help when help is not needed, to encourage differences in opinion, and to set a worthy example; to the members of the author's field party for their hard work, and most importantly, for the incentive they created by the naive expression of their general state of affairs; to his wife and daughter for their support, encouragment, and patience in the face of an irascible character.

INTRODUCTION

The purpose of this study is to analyse the surface geochemical expressions of the gold mineralization within the El Callao mining district, and their possible relationship with the formation of hydrothermal ore deposits in general.

The characteristics of the surface expression of the gold mineralization will be used as a basis for the planning of an exploration program of the El Callao mining district which produced large quantities of gold around the turn of the century and is now in decadence because of lack of enough reserves for a large-scale economical operation.

The ordering of elements in the haloes produced by the mineralization will be used to attempt a correlation of ore deposition with a more solid chemical basis than the one presented by Barnes and Czamanske (1967, p. 338). The stated order of complex stability in their work is Hg, Cd, Pb, Cu, Zn, Sn, Ni, Fe, Co and Mn, an order which groups chemically dissimilar elements and does not consider important elements such as Au and Ag.

The El Callao mining district is found in the Guayanan shield in the State of Bolivar, Venezuela (see plate, back pocket). Its areal extent is approximately bound by latitudes 7° 05' to 7° 50' north and longitudes 61° 25' to 62° 20' west. The region is at around 250 meters

above sea level and has a humid tropical climate with an annual average temperature of 26 °C and an average rainfall of 1500 mm distributed unequally between the rainy and dry seasons. Two vegetation types are common, jungle and savanna, the jungle being a densely wooded, humid environment, the savanna being a grassy, dry environment very sparsely populated with trees, commonly used for grazing.

This study is based on soil and rock samples taken along traverses that cut critical geologic features, and also taken irregularly within the district in order to establish background values. The soil samples were taken at a depth of around 10 to 15 centimeters. Rock and soil samples were analysed for Be, W, Bi, Mo, Sn, Hg, Au, Ag, Cu, Co, Ni, Pb, Zn, As, Mn and V.

The study reports briefly on the regional geology with some emphasis on the stratigraphy most closely associated with the gold deposits, the descriptive part of the gold deposits, and the previous geochemical work. The discussion and interpretation of results contains a critical description of analytical data for every traverse and its possible meaning, a short section on the effect of weathering and a section where results are correlated with the aid of coordination chemistry. Conclusions, recommendations, an appendix containing explanations on methods of sample collection, analytical techniques and a table of data pertinent to weathering and selected references complete the text. The back pocket contains a computer print-out with the analytical data for the samples within traverses, their graphical representation, and a plate where traverses and samples are located geographically and geologically.

REGIONAL GEOLOGY

Introduction

The area of this study is located within Precambrian terrain of the Guayanan-Brazilian shield. The Venezuelan part of the shield is limited essentially by the Orinoco river, Brazil, and Guyana. The region has been incompletely covered by geologic studies which have concentrated to the northern and eastern portions that are more accessible. Four geologic provinces have been described in the northern part of the shield, Imataca, Pastora, Cuchivero, and Roraima. In the eastern portion rocks of Imataca and Pastora form bands that trend ENE. Imataca is to the north of Pastora, and Pastora is followed by Roraima which consists of flat laying clastic sediments that extend south into Brazil and east to the Orinoco river in a discontinuous form (see figure 1, p. 4)

Imataca Province

The Imataca province contains the oldest rocks of the Venezuelan part of the shield. It contains paragneisses, ferruginous quartzites, minor pyroxenitic amphibolites, and it has been intruded by granites

and quartz monzonites (Chase, 1965, p. 108). The regional metamorphism varies from the amphibolite to the granulite facies (^Chase, 1965, p. 179-180). The age of the rocks is Lower Precambrian being deposited before 3000 m.y. ago, metamorphosed for the first time around 3000 m.y. ago, intruded with acidic plutons in the approximate interval 1500-2000 m.y. ago (Martin-Bellizzia, 1968). The term province indicates areal extent, the proper geological term for the rocks of this area is Imataca Complex (Boletin de Geologia, 1970, p. 307).

Pastora Province

The Pastora province is found to the south of the Imataca complex, and it is separated from it by two large faults (Kalliokoski, 1965, p. 96). The dominant rock types are basic and acidic volcanics and associated sedimentary products that have been metamorphosed slightly, and locally up to the amphibolite facies (Menendez V. de V., 1968, p. 313). Basic disagreement on the stratigraphy of these rocks is to be found in the literature (Menendez V. de V., 1968, and Martin-Bellizzia, 1968), and the results of the detailed study of Menendez V. de V. are used here since his area of study completely encompasses the El Callao gold mining district and there is no other available work of comparable detail published, although there are several in preparation (Martin-Bellizzia, Espejo, Benaim, personal communication). It is believed that no error is introduced by adopting Menendez' stratigraphic interpretation, even

if it differs grossly from conclusions drawn by detailed work of others in nearby areas. The author believes that the origin of the disagreement resides in the attempt to correlate similar units which belong to different greenstone belts as described by Anhaeusser and others (1969), and not to different interpretation of basic geologic observations.

Menendez V. de V. (1968) has subdivided the rocks of the Pastora province into supergroup Pastora that contains the Carichapo group and the El Callao, Cicapra, and Yuruary formations, separated by a structural discontinuity from the Caballape formation, and all of these intruded by acidic igneous rocks and migmatites that have not been differentiated and constitute the Supamo complex. The stratigraphic relationships are presented schematically in figure 2 (p. 7). The age of concordant granitic bodies within Supamo varies from 1740 to 2000 m.y. It has been assumed that the metasedimentary rocks of Pastora are younger than the metasedimentary rocks of Imataca.

The rocks of the Pastora province around the El Callao area include basic volcanic rocks and associated sedimentary units that occupy tectonic basins surrounded by acidic intrusives domes (Menendez V. de V., 1968, p. 310, see also the plate, back pocket). This setting would make this area a good example of a Precambrian greenstone belt as described by Anhaesser and others (1969), and it may be worthwhile to look at the distribution of ages of the Supamo complex for evidence of a crust onto which the volcanics were deposited.

El Callao

The El Callao formation (Menendez V. de V., 1968, p. 322), with a maximum thickness of about 3000 meters is composed of amphibolitic metalavas of basaltic composition which have been metamorphosed generally to the greenschist facies and locally to the amphibolite facies. Most lavas are isoclinally folded and present pillow structures at intervals in the section. The bulk of the gold production from the El Callao district has come from deposits within this formation.

Cicapra

The Cicapra formation (Menendez V. de V., 1968, p. 322) of a maximum thickness around 2000 meters is composed mainly of porphyroblasticactinolite-biotite schists that represent the metamorphism of basic water-laid tuffs, and graywackes, interbedded with minor amounts of volcanic breccias and agglomerates. This formation has been intruded by quartz-porphyry granite stocks that are sometimes associated with gold mineralization. The age of one of these stocks has been determined to be 1510 m.y. (Olmeta, 1968). The Cicapra and the El Callao formations constitute the Carichapo group. The Cicapra formation overlies the $\frac{E}{2}$ Callao formation and transitionally passes into the overlying Yuruary formation.

Yuruary

The Yuruary formation (Menendez V. de V., 1968, p. 328) of estimated thickness of around 1000 meters is composed of fine-grained laminated epiclastic rocks interbedded with metamorphosed feldspathic to volcanic medium to coarse bedded sandstones. Dacitic volcanism has controlled the composition of the rocks of this formation. The formations El Callao, Cicapra and Yuruary form the Pastora supergroup.

9

Caballape

The Caballape formation (Menendez V. de V., 1968, p. 310). with a minimum estimated thickness of 5000 meters, is composed mainly of volcanic mudstones, graywackes, and conglomerates, with some tuffs and pyroclastic breccias. It is slightly metamorphosed, and presents only open folds in contrast with the isoclinal folding of older rocks.

Supamo

The Supamo complex (Menendez V. de V., 1968, p. 310) includes a series of intrusives acidic igneous rocks, migmatites, and quartz-feldspar gneisses that have not been differentiated but in certain instances have been observed to have discordant relationships with surrounding

т 1463

rocks of all types. The age of two of these discordant young bodies within the Supamo complex (Iap in the plate, back pocket) have been determined to be 2000 and 1510 m.y. old (Martin-Bellizzia and others, 1968).

Roraima Province

The Roraima province is found to the south of the Pastora province. The rocks of Roraima discordantly overlie on the volcanics of Pastora (Boletin de Geologia, 1970, p. 537), and probably over the older rocks of the Supamo complex; these rocks had been considered a formation, but recently have been raised to group status and subdivided into four formations (Allan Reid, personal communication, 1971). The most common rocks are quartz conglomerates, petromictic conglomerates, quartz sandstones, and feldspathic sandstones, with some red shales and jasper horizons. These rocks have suffered very slight metamorphism, only observable in the shales, and are normally flat lying. Extensive intrusions of diabase sills occur at several places in the stratigraphic section, and radiometric determinations have revealed ages of 1500 to 2100 m.y. (McDougall and others, 1963 and Snelling, 1963).

Younger Rocks

Some basic igneous rocks are found in the El Callao district that

are not included in the general scheme of provinces described. Some metamorphosed gabbroic rocks intrude concordantly into the formations El Callao, Yuruary and Caballape. These rocks (Ibm on plate, back pocket) are predominantly exposed in synclinal structures on both sides of the Nacupai fault zone; their age has not been established.

Another group of rocks that do not fit into the described stratigraphy is made up of unmetamorphosed diabases in the form of small dikes or long fracture-filling dikes (Laguna dike), and a shallow-plate-shaped intrusion as in the mesa of Nuria (Ib on plate, back pocket). The age of these rocks has not been determined in this area, but similar rocks have been determined to the north and east to be 400 m.y. (Martin-Bellizzia, 1968, p. 363).

A very minor group of ultrabasic rocks, serpentinites and pyroxenites, intrudes the Supamo complex and the El Callao formation in the western portion of the area under study (see plate, back pocket).

GOLD DEPOSITS

1

The regional plot of gold occurrences outlines a band that starts in Venezuela extends ENE through Guyana, Surinam, French Guiana and Brazil, being approximately 900 kilometers long and 200 kilometers wide (Emmons, 1937, p. 293). In Venezuela production has come from El Callao, Cicapra (50 km west of El Callao), and Botanamo (100 km ESE of El Callao). The production from El Callao has been much greater than from the other two.

The gold in these deposits is found in three forms (Bernet, 1925):

- 1. In massive quartz veins as elemental gold.
- 2. In quartz veins with associated pyrite.
- 3. In the pyrite of sheared lavas, without quartz.

The first form is the most common one, and the mineralization is frequently accompanied by calcite and/or ankerite, and tourmaline. Hydrothermal alteration associated with the mineralization is variable, and shows that within the district there exist deposits that can be considered hypothermal, mesothermal, or epithermal (Park and MacDiarmid, 1970, p. 146-159). In some of the veins at El Callao (Newhouse and Zulcaga, 1929, p. 806), veinlets of tourmaline are common, and at Quebrada de Oro, tourmaline becomes massive, forming schorl-rock with quartz, indicating a high temperature of formation (Park and MacDiarmid, 1970, p. 178). In most

veins chlorite is the most common alteration mineral together with sericite; and in others, such as La Culebra vein, the alteration reaches at least 20 meters on either side and is composed of sericite and kaolinite in approximately equal amounts.

Several authors (Bernet, 1925; Duparc, 1922; Newhouse and Zuloaga, 1929) have expressed their opinions on the origin of ore deposits of El Callao district. Bernet (1925) suggested that the deposits were formed by the injection of the products of extreme differentiation of a granitic magma, reasoning that the large amounts of jasperoid formed close to certain veins would have to come from silica-rich rocks. Newhouse and Zuloaga (1929) relate the entire gold belt, from Venezuela to Brazil, to an episode of intrusion of diabases. With the data now available it seems unreasonable and unprofitable to this author to go beyond the idea that these deposits are of hydrothermal origin.

Kalliokoski (1965, p. 85) asserts that the gold mineralization is older than the Laguna dike, while Geoscience Inc. (1966, p. A6) sustains that the evidence is not clear, and that if the relationships with other minor granitic dikes are considered, the mineralization is relatively contemporaneous with the intrusion of dikes. Neither the Laguna dike nor the granitic dikes have been dated, but dikes similar to Laguna have been dated to the north and east to be 400 m.y. (Martin-Bellizzia, 1968, p. 363).

Within the El Callao district there are approximately 250 known mineralized quartz veins. These veins are more common within the El Callao formation but are also found within the formations Cicapra, Yu-

ruary and Caballape (Menendez V. de V., 1969), and there is no indication that there is any decrease in ore grade with distance from the center of the district (Geoscience Inc., 1966, p. E5). Quartz veins are also found within the Supamo complex but their concentration in gold is only 1 to 2 parts per million (Duparc, 1922, p. 30).

The veins that are found around the town of El Callao are of the order of several hundred meters long, although in some cases reach up to 4 kilometers. The gold is distributed irregularly within the veins and has the tendency to decrease in concentration with depth, although some exceptions are known. The veins found at Cicapra and Quebrada de Oro are less continous than the ones around El Callao, and their gold is even more irregularly distributed but of very high values (Newhouse and Zuloaga, 1929, p. 294).

In the period from 1826 to 1968 the district has produced approximately 185,000,000 grams of gold, of which nearly half came from the Viejo Callao mine (Locher, in preparation, p. 64-65), which is located under the town of El Callao. The average grade has been of 21.5 grams per ton over the district (Geoscience Inc., 1966, p. Bl).

PREVIOUS GEOCHEMICAL WORK

A consulting firm, Geoscience Inc., performed some geochemical testing in the El Callao area during a 4-month period in 1966, under contract of the Ministry of Mines of Venezuela. The results of this work have been published by Nason and others (1968).

The stated objectives of this work (Nason and others, 1968, p. 38) are:

- To discover if the gold veins could be detected by the enrichment presented by the alluvial deposits along local water courses.
- 2. Investigate if the presence of gold in the vegetation of the area could be used as an indicator in geochemical exploration.
- 3. To determine the dimensions of gold haloes over gold veins.
- 4. To evaluate the sensitivity, efficiency and cost of exploration processes in order to select the most adequate one.

Samples of sediments and plants were taken along a water course before, over, and after crossing a known mineralized vein. Samples of soils were taken across several known mineralized veins at intervals of 50 meters. The sediments and plants were analysed for gold by atomic absorption and neutron activation (Nason and others, 1968, p. 32). The soils were analysed for heavy metals (CXHM) by cold extraction

т 1463

(Bloom, 1955), for Au and Ag by atomic absorption, and for Au by fire assay after a preconcentration of heavies by panning.

The stated conclusions of this work (Nason and others, 1968, p. 39) are:

- The gold can be detected in soils and sediments by different analytical techniques. With some of these techniques determinations can be carried out directly, and with others preconcentration is necessary.
- 2. High concentrations of gold in sediments of water courses are related to known gold veins in a dispersion pattern modified by surficial processes that may attenuate or displace the gold halo downstream.
- 3. The gold content of plants does not bear any relationship to the concentration of gold in the soils over which they grow.
- 4. Silver anomalies apparently have some relationship to the high gold contents.
- 5. Cold-extractable-heavy metals values cannot be consistently correlated with auriferous veins.
- 6. The best pattern for geochemical soil sampling for the detection of auriferous veins is considered to be the sampling of every 25-meter interval along lines 500 meters from each other and perpendicular to the regional strike.

In 1970 (Ramon Bisque, unpublished report) another geochemical reconnaissance was reported. This work, representing a 3-day reconnaissance included:

- Collection and analyses of soil samples over the geological formations described in the area to establish a background or reference.
- 2. Collection and analyses of samples over the Nacupai fault zone to test the possible relationship of the fault zone to the mineralization.
- Collection and analyses of samples across two known veins to test for possible indicator elements.

Data on the content of Cu, Pb, Zn, Hg, and Au were reported.

The indications of Bisque's work were:

- Hg in the fine fraction of soils does not appear to have a direct relationship to mineralization, although Hg is high on either side of veins in certain cases.
- 2. Trace Cu and Zn in the fine fraction of the soil present broad anomalies which would be useful in regional geochemical prospecting. Pb, Ag and Mo appeared to have no useful relationship to mineralization.
- 3. The Nacupai fault zone is low in those metals that appear to reflect mineralization in adjacent areas.

Bisque's report included data that disagreed with the work of Nason and others (1968); specifically the relationship of Cu and Zn with the mineralization, and also raised some fundamental questions that have guided the objectives of this author's work.

DISCUSSION AND INTERPRETATION OF RESULTS

In this chapter the analytical data generated by this work will be related to the regional geology and known areas of gold mineralization in order to establish the basis for a dispersion model of chemical elements close to the zone of Au deposition. This model is then extended, by analogy, to levels of dissection removed from the zone of Au deposition in the direction of assumed flow of hydrothermal solutions (generally upward).

The model, developed entirely on the basis of this work's analytical data, will be compared to similar models developed by other authors and rationalized on the basis of principles of coordination chemistry.

The geologic map of the area studied with the location of samples are found in the plate (back pocket), sample collection, analytical methods and manner of presentation of data are described in the appendix (p. 50).

Traverses

Yuruary-El Peru-Mocupia

This traverse was selected as a regional guide to the variation

of elements in soils because it cuts the Nacupai fault zone, the veins of several important mines close to the town of El Peru, and the complete section of El Callao formation (for location see the plate and graph N° 1, back pocket).

In the portion of this traverse represented by samples 580 to 632, the veins of the Laguna mine, the D lode, the Austin mine, the Chile mine, and Cenicero are located. If this section is compared with regions on either side in the traverse, it can be observed that the Cu in the central region is generally higher than 120 ppm (122 ppm Cu is the average for the whole traverse); Pb wherever detected, is found to be very closely associated with the intersection of the known vein with the surface; Zn is commonly associated with Pb, but not always; Mn forms a pronounced high concentration area over the whole central region and falls off on either side; V is closely related to Mn in behavior, but does not show the variability of Mn; Ni and Co follow Mn and V in their local fluctuations, but regionally they do not show any appreciable increase or decrease within the area under consideration.

Within this section of the traverse, samples 590 to 600 and 627 to 634 were selected for Hg and Au analyses. Sample 597 in the first group and samples 628, 630, and 631 in the second group, were found to contain appreciable Hg (0.5 to 0.6 ppm); and samples 590, 591, 595 and 600 in the first group and 630 and 632 in the second group were found to contain appreciable Au. In the first group of samples, taken across the Laguna and "D" lode veins, the Hg and Au do not coincide in position, while in the second group of samples taken over the Cenicero vein

T 1463

they are roughly coincident. From this observation it becomes evident that the known mineralization is related to, and is shown by, Hg and Au, and also that the relationship is not one of coincidence. Since the outcrops of these veins is generally not known with precision, it is not possible, just from this case to determine if, and how much, either Hg and/or Au are displaced from the veins by weathering phenomena.

When the present topographic surface dissects the mineralization within the zone of gold deposition, the analyses of soils developed on that surface show broad anomalous high concentrations of Cu, Mn, and V and localized anomalous high concentrations of Pb, Zn, Au and Hg.

The area just considered, around the town of El Peru is the best known. Other sections of the traverse Yuruary-El Peru- Mocupia having similar characteristics to it were selected for Hg and Au analyses. ' The section represented by samples 178 to 196 is not related to known mineralization (see graph No. 1, back pocket), has relative highs in Cu, Pb and Zn; a very high anomaly in Mn dropping to very low values; a regional high in V, Ni, and Co; and samples 190, 191 and some other soil samples taken close to them outside the traverse, contain around 200 ppm As. This section is within the Nacupai fault zone and has most of the characteristics of known mineralization to the south plus the anomalous As. As seen in the print out (back pocket), the Hg content of these samples is appreciable all along the section, but Au is not detected.

Two other sections, represented by samples 212 to 217 and samples 224 to 232 have similar characteristics to the known mineralized zone

of El Peru. Hg analyses indicate again anomalous contents, and again Au is not detected. At this point it looks as if Cu, Pb, Zn, Mn and V could be incidental to the mineralization around El Peru.

Another section within the Yuruary-El Peru-Mocupia traverse, related to a mineralized vein discovered by this work sheds much light on the problem of surface geochemical expression of the mineralization in this region. This section, represented by samples 246 to 553, is within a minor regional high in Mn, an anomaly in Pb and Zn, low values of Cu, and fluctuating values of Ni and Co. Hg in these samples increases towards the center of the anomaly (around sample 256) reaching a high of 10 ppm, and drops slowly towards the south. Au also increases dramatically from 0.00 to a maximum of 3.45 ppm at sample 256, and falls off again to the south. Sample 256 is also unique in that it was the only sample, of all samples collected for this work, where Ag was detected (approximately 1 ppm).

The author interprets the above results to mean that the Yuruary-El Peru-Mocupia traverse crosses several mineralized areas that are dissected by the present erosional surface at different levels with respect to the mineralization of Au and its attending haloes of associated elements. It seems as if the portions of the Yuruary-El Peru-Mocupia traverse that have been considered in this chapter represent: 1) A mineralization dissected by the topographic surface within the region where gold was originally deposited by hydrothermal solutions in the section of samples 246 to 553, 2) a mineralization dissected close to the top of the regions where gold was originally deposited in sections represented by samples

590 to 600 and 627 to 634, and 3) mineralizations dissected much above the region of gold deposition in sections represented by samples 178 to 196, 212 to 217 and 224 to 232.

With the above interpretation in mind, it seems also reasonable to consider the section represented by samples 172 to 222 (see graph N° l, back pocket), which crosses the Nacupai fault zone, as an example of a mineralized zone of large proportions which is dissected at a level far removed from the deposition of gold. This interpretation is supported by the striking symmetry shown by the concentrations of Mn which are extremely high at both ends and very low in the middle. This symmetry is shown by high and low concentration of V, Ni and Co. In each case the lows are coincident around samples 199 to 203 and highs are at different regions for Ni and Co, Mn and V.

A brief consideration of every traverse studied in the light of the above interpretation is considered useful and follows.

Laguna Dike

The Laguna Dike traverse was selected because it cuts the Nacupai fault zone over topographically low terrain and cuts the Laguna Dike which has been mentioned to be of importance in its association with the Au mineralization (see the plate and graph N^o 3, back pocket). This traverse shows an extensive central area of low values of Cu, Mn, V, Ni and Co. On either side of this central area the value of all elements

increases appreciably. It may be that the soils of this area are developed substantially on materials of the valley floor (very few outcrops are to be found along the traverse), and at places rounded pebbles of quartz are observed and represent older sedimentation products of a large area. The high concentration of elements to the south **is** probably due to the fact that the traverse leaves the alluvial flat and covers soils developed on the El Callao formation. The high values towards the north are probably due to the removal of alluvial-flat material by erosion as seen by the appreciable topographic slope developed at this end (rock outcrops are first seen at this end around sample 328).

Puente de El Callao

This traverse was selected because it cuts across the Nacupai fault zone at its greatest development and is close to the El Viejo Callao mine (see the plate, and graph N^O 2, back pocket).

The section of the traverse that corresponds to the fault zone is characterized by low values of Cu, Zn, Co, Ni (with some fluctuations), Mn, and V. The section of the traverse that is outside the fault zone is characterized by higher values of all elements except Pb. This situation is very similar to case 3 (p. 22), where the mineralization is dissected much above the region of gold deposition, but here only one side of the anomaly is detected. It is predicted that the other side

т 1463

of the anomaly would be detected by extending this traverse to the south. It is interesting to note here that the El Viejo Callao mine, the richest mine of the area, is located 400 meters to the south and 400 meters to the west of the southern end of this traverse, under the town of El Callao.

Some differences between this traverse and case 3 (p. 22) of the traverse Yuruary-El Peru-Mocupia that may be of importance are the developments of higher values of Cu, Ni, and Co. These differences are not caused by higher values of the elements in the gabbroic rocks, since part of the traverse of case 3 (p. 22) is also developed in these rocks, and do not show such high values.

Pela Bollo

During the regional collection of samples for background study it was noted that in a new road cut the lavas of El Callao formation were fractured and slightly sheared (see the plate, back pocket). Since mineralization is thought to be controlled by sheared zones within El Callao formation (Bernet, 1925; Menendez, 1969), this traverse was located to discover a possible anomaly. In graph N^O μ (see the plate, back pocket, for location) an anomaly in the contents of Pb, Mn, Ni and Co is easily detected in the central region. This anomaly is interpreted to indicate mineralization dissected just above the region of gold deposition, since gold has been detected (0.10 ppm) in samples 333 and 334.

This interpretation is not completely satisfactory because towards the SW end of the traverse an anomalous region of low concentrations is detected that could point towards the center of a large fault zone, shear zone, or mineralization zone. Unfortunately, the scarcity of outcrops does not permit any detailed geological work, and much longer traverses would be needed to clarify the situation. On the other hand, because of the lack of outcrops, regional geochemical traverses would probably be the most economical way to effectively prospect for gold mineralization in this region.

Maestre Vein

This traverse was selected because it is found completely within the Yuruary formation (see the plate and graph N^o 5, back pocket) and cuts across a quartz vein with abundant tourmaline between samples 374 and 375, a larger quartz vein without tourmaline attendended by jasperoid and smaller veinlets around sample 378, a quartz vein at sample 394, and a shear zone around sample 385.

Within the immediate area there are several small mines operating, but the veins described in this traverse have not been worked and their gold content is unknown. The traverse was selected for the purpose of evaluating the ability of the soil geochemical method, as used by the author, to detect undisturbed quartz veins within the Yuruary formation.

The quartz vein that contains abundant tourmaline, thought to be
formed at high temperature, is indicated geochemically in soils by a modest increase in Co, while Pb is low around the vein, and the other elements studied are close to average. This situation is interpreted to mean that the vein is dissected at a low level where Pb would not be precipitated.

The quartz veins around samples 378 and 394 are indicated clearly by high (Pb) concentrations, while the rest of the elements studied do not clearly show any relationship. This lack of apparent relationship is probably caused by a combination of factors; the expression of veins and mineralization is probably different within the Yuruary formation as compared with the mineralization within El Callao formation (see La Culebra traverse, p. 27), the direction of the traverse is roughly perpendicular to the tourmaline containing vein but not to the other features, and the traverse is not long enough to portray the regional fluctuations of concentration of elements. Again, as in the Pela Bollo traverse (p. 24), it becomes evident that at least a relatively long traverse, say 3 to 4 kilometers, is generally necessary through any specific area to give enough background for confident interpretation of small features like veins.

The shear zone around sample 385 is indicated modestly by detectable values of Pb and Zn, and by high values of Co, Ni, V and Mn. This shear zone is interpreted as an indication of mineralization at depth, similar to case 3 (p. 22), where quartz and gold are not detected but associated elements present a definite anomaly.

La Culebra

This traverse (see the plate and graph N^{\circ} 6, back pocket) was selected because it is found completely within the Yuruary formation and cuts across La Culebra vein which has produced some Au in the past and which is characterized by hydrothermal alteration to white-cream sericite and kaolinite for 20 meters on either side of the vein. This hydrothermal alteration is unique within the known El Callao district and is taken to represent a large temperature difference between hydrothermal solutions and surrounding rocks (Parks and MacDiarmid, 1970, p. 146-159).

The outcropping La Culebra vein is shown geochemically by high concentrations of Pb, Cu, Ni, Mn, and V giving support to the expression of known mineralization found close to the town of El Peru. The outstanding feature of this traverse is that it shows much lower values for background concentration than all other traverses, while the relative order of magnitude of the anomalous values over background is kept constant for all elements, excepting Cu which is not a good indicator elsewhere.

All samples of this traverse were selected for Hg and Au analyses. Hg is found in appreciable concentrations (see print out, back pocket) close to the vein, but not directly above it. Au shows the vein very clearly, but some of the high values could be due to surface scattering of mine material (a piece of quartz left at the surface contained 0.70 ppm Au, and the kaolinite-sericite alteration 1.05 ppm Au). Notice

that there is another major anomaly centered at sample 477, and two minor anomalies centered at samples 473 and 488; all these are shown by lower Au concentrations.

This traverse is interpreted as dissecting auriferous veins within the region of gold deposition. The lower concentration of elements with respect to other traverses studied is interpreted as being caused by effective leaching of hydrothermal solutions which can be more active at low pressures (Park and MacDiarmid, 1970, p. 41) because of increased porosity and permeability.

Another effect that may be important in determining the extent of hydrothermal alteration at low pressures is the probable availability of more water obtained by mixing or recirculating with surface waters, and hence being able to leach more thoroughly.

Quebrada de Oro

This traverse starts within the quartz-porphyry granite stock of Mandingal and cuts across a known mineralized zone located at the contact of the stock with the Cicapra formation (see the plate and graph N^o 7, back pocket). The traverse does not pass through the main mineralized zone because this zone was much disturbed (practically turned over) during the mining operations around the start of this century.

This location was selected to evaluate the surface geochemical expression of a gold mineralization as shown by soils developed in a savanna environment. Unfortunately the comparison will not be a good

one since the type of mineralization here is different from the mineralization found around the town of El Callao. Here the quartz veins are discontinous (Newhouse and Zuloaga, 1929, p. 294; Juan Boada, 1971, personal communication), and much richer than around El Callao. In graph N^O 7 (back pocket), samples 404 to 409 represent background over the quartz-porphyry granite stock; the mineralized area is indicated by high values of Fb, Co, Ni, V and Mn, very much like at El Peru and La Culebra. The section of the traverse represented by samples 410 to 452, was selected for Hg and Au analyses. The Hg content shows an anomalous interval in samples 410 to 446, and again in sample 449. The Au content fixes the mineralized zone at samples 415 and 446.

This traverse is interpreted as dissecting the mineralization near the top of the zone of Au deposition in the known mineralized area. The two other anomalies around sample 405 and samples 455 to 457 are similarly located, and should be investigated. The lack of symmetry displayed by the haloes around the mineralized zone, samples 410 to 451, probably indicate the lower permeability of the quartz porphyry with respect to the metasediments of the Cicapra formation.

Carichapo Fault Zone

This traverse was selected (see the plate and graph N^O 8, back pocket) for comparison with the Nacupai fault zone. The traverse is all within the Yuruary formation, but within the traverse vein quartz and jasperoid form the only outcrops observed except for an outcrop of Yu-

ruary in the Carichapo river bed.

If the geological information of regional character presented by Menendez V. de V. ("no date", circa 1970) in his map of the Guasipati region is valid in detail, and it is used to interpret this traverse, the undisturbed Yuruary formation (samples 501 to 552) would present an area of very low background values of the elements studied, and the fault zone itself would be shown by a zone of high values of Cu, Pb, Co, Ni, V and Mn. The high values represented by samples 544 to 550 at the southeastern end of the traverse would similarly indicate a fault or a mineralized zone.

The sections of this traverse represented by samples 517 to 522 and 539 to 540 were selected for Hg and Au analyses, samples 519, 520, and 521 (see print out) are the center of a Hg anomalous area; and samples 539 and 540 show no detectable Hg. Au has not been detected in any of these samples.

It is interesting to note that the fault zone is detectable by surface geochemical methods. This detection seems to hinge on the fact that the fault zone has been invaded by veins of hydrothermal origin that display surface geochemical expressions entirely similar to the auriferous veins of the region. Assuming that these veins are mineralized with Au, the anomalous sections of this traverse (samples 517 to 522, 502 to 504, and 545 to 549) are interpreted as dissecting the veins somewhat above the region of Au deposition. It may well be worth investigating the matter since a find in this area would make the whole fault zone a possible target.

Weathering

Samples of rocks of the different geologic formations and of soils developed over them were taken during this study. It should be possible then to give an idea of background values, or ranges, for the trace elements studied for the rocks and for the soils, and also to determine the effects of weathering. In the appendix (p. 54) and in the plate (back pocket), selected data for each formation are presented, and the location of samples can be found; it would be noted that the samples of rocks and soils do not correspond to the same localities, so that only tendencies of the effect of weathering can be pointed out. Some of the samples will be located on traverses.

Since the samples collected come from a mining district, the problem of separating those that come from mineralized areas is definitely present. In the appendix (p. 54) those samples that are thought to be influenced by mineralization are distinguished.

Taking into account the limitations mentioned above, it still seems reasonable to conclude that Cu is depleted in the top 10 centimeters of soil around 3 times in terms of concentration with respect to the rock from which the soil is developed. Pb is in general concentrated in the same part of the soil with respect to the rock around 2 times. Zn is depleted from the rock to the same interval (top 10 centimeters) of the soil, but a semiquantitative idea of the dilution factor is not possible since the Zn content of soil is most times lower than the detection limit of the method used. Mn is depleted to about half the

amount present in the rock, while Ni is depleted to around one fourth the amount present in the rock. Co seems to maintain roughly its concentration while the rock is transformed to soil.

Although the distribution of major elements during tropical weathering has been studied for several types of rocks (see for example Harrison, 1933; and Pasquali, Lopez and Meinhard, 1972), it would be useful to study in detail the effect of weathering on Co because of its apparent constancy and its association with hydrothermal ore deposits.

To determine the effect of vegetation type, jungle or savanna, over the expression of mineralization in soils was one of the purposes of this study. The distribution of the gold veins did not permit a comparison between the two environments while keeping every other important variable constant.

Most traverses were localized in jungle, except Quebrada de Oro and the Carichapo fault zone. At Quebrada de Oro mineralization is not of the same type as the one found close to the town of El Callao and hence not comparable, but because of a general gross similarity of results here and at the Carichapo Fault Zone it is concluded that for Cu, Pb, Zn, Mn, V, Ni, Co, Hg and Au in going from jungle to savanna the general pattern of expression of mineralization in soils is maintained.

Dissection Levels

The analysis of the analytical data and their relationship with

known mineralization leads the author to propose an integral model that explains all anomalies observed.

It is envisioned that the hydrothermal solution, traveling in a certain direction going down a thermal gradient (probably towards the surface from depth), will deposit quartz first (perhaps together with tourmaline), then Au, Ag and Hg together, then Cu, Ni and Co, then Pb and Zn then As, and finally Mn and V.

The process is to be considered continuous, although quartz is deposited first it is still deposited up to the main zone for Pb and Zn. Mn, for example, starts its deposition with quartz and Au, but its main release from solution occurs when most other metals have precipitated; in consequence it would have traveled farther laterally and vertically so that it should potentially show a much wider anomaly than elements that precipitate mainly before (at higher temperatures).

The precipitation order outlined above includes only the elements that have been considered in this work. When its relationship with chemical principles is attempted, an idea of how other elements would behave will be presented (p. 39). On the other hand, within the elements studied, there may be a change in order of deposition because of large variations of concentration. A given element may be too dilute to be able to precipitate at a certain temperature-pressure-ionic strength field, or another element that forms minerals which readily accept it in their structure may be of such high concentration that it will precipitate the given element before its custormary order.

A schematic representation of the model outlined above

٩,

Figure 3. Cross section. Schematic representation of the relative positions of maximum concentration of elements in a hydrothermal system around its conduit as shown in soils. Dissection levels shown in detail in figures 4,5 and 6.

Figure 4. Cross section. Generalized soil anomaly over mineralized vein dissected within zone of Au deposition.

Figure 5. Cross section. Generalized soil anomaly over mineralized vein dissected just above zone of Au deposition.

Figure 6. Cross section. Generalized soil anomaly over mineralized vein dissected well above zone of Au deposition.

is shown in figure 3 (p. 34), where the regions of maximum expected concentration of each element studied are drawn. If sections at different levels are drawn across the diagram, the change of an anomaly of a given vein with erosion level can be clearly envisioned (see lines H-H', M-M', and L-L', p. 34). A generalized anomaly for each erosional level is shown in figures 4, 5 and 6 (pages 35, 36 and 37).

This same sort of distribution of elements has been recognized and used for prospecting by Polikarpochkin and Kitaev (1971), and Ovchinnikov and Grigoryan (1971).

Ovchinnikov and Grigoryan have attemped to describe a zoning order within haloes for most types of sulfide deposits and distinguish between lateral and vertical zoning. Polikarpochkin and Kitaev consider the haloes of epithermal gold-bearing deposits and equate the zoning in the horizontal and vertical directions (1971, p. 382). The main features of these last authors' work are in agreement with this work's model as shown by figure 3 (p. 34), namely the high-temperature position of Au and Ag, subsequent positions of Cu, Pb, and Zn.

The addition of Mn and V into the model (see figure 3, p. 34) extends considerably the known effects of hydrothermal action towards the low temperature field and makes it more useful for geochemical prospecting in two respects. First, the expressions of hydrothermal action are recognized at a greater distance (generally upward from the deposit), and would discover deep-seated deposits. Second, the expressions of hydrothermal action become wider as they represent lower temperatures and their usefullness for regional prospecting is proportionally enhanced.

Theoretical Considerations

39

Water at high temperatures

It is known that as the temperature of water is changed certain of its properties vary considerably. Of influence on ore deposits is its decrease in dielectric constant and decrease in viscosity with increased temperature. If ionic solutes are added to water, such as NaCl, there will be another decrease in bulk dielectric constant that depends on the ionic strength of the solution and the kinds of ions in it (Hasted, Ritson and Collie, 1948). The subject of water at high temperatures has been treated in a general way by Cobble (1966), and more recently in its pertinence to ore forming solutions by Bisque, Pasquali, and Pyrih (in preparation).

In essence, the decrease in dielectric constant with temperature has the effect of favoring the solubility of less polar covalent compounds and the association of ions into uncharged species (Prue, 1958; Kraus and Raridon, 1959). The first effect is related to the fact that substances will dissolve in like substances, and as the dielectric constant of water decreases, the water will become a better host for covalent-bonded chlorides and sulfides of ore metals. The second effect is due to the increase in attraction of ions in solution due to Coulomb's Law when the dielectric constant of the medium is decreased,

F is the force of attraction of unlike charges, z_i and z_2 the number of unit charges e per ion, d the distance between centers of ions, and \leq the dielectric constant.

The ion pairs formed can then be stabilized in solution by coordinating with adjacent -0⁻ and -OH groups of silicates which in solution are present as small chains and plates surrounded by these groups.

This is undoubtly an extremely simplified presentation, and the reader who wishes a more complete treatment is referred to Bisque, Pasquali, and Pyrih (1972, in preparation).

Polar-covalent bonds

Ore deposits described as being of hydrothermal origin typically contain a relatively small number of elements that are concentrated in these deposits. The relative abundance of these elements in these deposits varies from deposit to deposit, and regularly within the same deposit, but their association as a group is stricking. Within the periodic table these elements should have been separated by their distinct chemical behavior, and so they have been.

In coordination chemistry the stability or facility of formation of complexes of metals with different ligands is modernly viewed in terms of elements of classes (a) and (b) Ahrland and others (1958), or

in terms of hard and soft acids and bases (Pearson, 1953).

Ahrland and others (1958) classify electron acceptors as (a) type if they form stable complexes with ligands of the first group of the periodic table (C, N, O, and F), and of (b) type if they form stable complexes with elements of the second or subsequent groups (P, S, Cl, As, Se, Br, ect.). Elements of type (a) are not polarizable, generally small, and in a high oxidation state; typical examples are Na⁺, K^+ , Ca⁺⁺, Mg⁺⁺, Y⁺⁺⁺, and Fe⁺⁺⁺. These elements or ions will prefer to combine with nonpolarizable, highly electronegative elements or anions such as N, O, and F. Elements of type (b) are polarizable, generally large, and in low oxidation states; the most typical are Rh, Ir, Pd, Pt, Au, Cu⁺, Hg⁺⁺, and Tl⁺. These elements or ions combine readily with polarizable elements or anions such as P^{-3} , S^{-2} , Cl^{-} , Se^{-2} , ect. There is an intermediate group of elements of which the most typical are Cu⁺⁺, Pb , Zn , Fe , Co , Ni , Mo , and Mn . Notice also that a given element can be of (a), (a+b), or (b) character depending on its oxidation state.

Pearson (1963) views the reaction of metals to form complexes as examples of reactions between Lewis acids and bases. Acids are then classified as hard or soft, and these are roughly comparable to class (a) and (b) elements respectively; bases are similarly classified as hard or soft, and these are comparable to the ligands of the first group, and ligands of the second or subsequent groups respectively. Also in this scheme border line cases are found for acids and bases.

The study of the chemical behavior of all bases and acids indi-

cates that hard acids react easily with hard bases, soft acids react easily with soft bases, but that a hard acid with a soft base or viceversa do not produce stable compounds. This behavior is explained with defferent success by different theories namely ionic-covalent, π bonding, electron correlation, and solvation (Pearson, 1963, p. 3537).

It is seen that hydrothermal ore deposits are formed by the geochemically abundant elements of class (b) plus elements of class (a+b), or by soft acids and soft bases plus borderline cases of acids. The order of deposition of elements from high to low temperature seems to follow diminishing (b) character from Au, Ag, Cu⁺, Hg⁺, to Cu⁺⁺, Fe⁺⁺, Pb⁺⁺, Zn⁺⁺, Ni⁺⁺, and Co⁺⁺. Mn, one of the elements studied in this work, would be expected to behave very similarly to Fe⁺⁺ (but having to compete with Fe⁺⁺ for the base), since it is assumed to be present as Mn⁺⁺ in hydrothermal solutions, and have (a+b) character. V, presumed to be present as V⁺⁺⁺ in hydrothermal solutions whould have (a+b) character, but a bit more (a) character than Mn⁺⁺ since its oxidation state is higher, and would therefore be deposited at lower temperatures. As +++, which is considered a hard acid (Pearson, 1963, p. 3534), should be deposited at low temperatures far removed from Au; its seemingly abnormal position with respect to Mn and V may be due to its low overall concentration in the system (Mason, 1966, p. 23), and/or to its more nearly equal electronegativity to sulfur (Cotton and Wilkinson, 1967, p. 103). Figure 3 (p. 34) shows an order of deposition consistent with the analytical data and with the above discussion. The order of deposition mentioned can also be rationalized in terms of increasing

polarity for the covalent bond between sulfur or chlorine and the metals.

Au and Ag involve metallic bonds instead of covalent bonds and seem to be out of place. On the other hand it is known that soft bases such as S^{-2} , Se^{-2} , and Te^{-2} coordinate with metals of strong (b) character in their zero oxidation state (this is the way that metallic catalysts are commonly poisoned), it may be that these noble metals are transported at high temperatures by neutral complexes of uncharged character (Au, nH₂S).

Hg which is of strong (b) character would be deposited at high temperatures, but it is found at all levels of dissection of mineralization. It is postulated that its distribution is also controlled by the fact that it is easily reduced to metallic Hg and in this state it is very volatile and exceeds the hydrothermal solutions in fluidity.

ANOMALIES OF ECONOMIC IMPORTANCE

During this study several anomalies were found over suspected and unknown mineralized areas. Some of them have characteristics that make them good prospects for immediate drilling, and others, whose economic importance is a matter of opinion and depends on the interpretation of data. Before drilling, it is recommended that for all anomalies located by just one traverse, additional lateral traverses be run to find the center of the anomaly.

Anomalies that clearly represent Au mineralization that is found close to the surface are the sections represented by samples 246 to 553 within the Yuruary-El Peru-Mocupia traverse and by samples 475 to 479 within La Culebra traverse. It is expected that shallow drilling at these sites will locate gold-bearing veins.

Anomalies that are interpreted as being above Au mineralization but not far removed from it (an estimate would place them at 100 to 200 meters) are listed below:

Samples	Traverse
226-230	Yuruary-El Peru- Mocupia
240-242	11
556	tt
561	11
636-641	11
662-664	11

Samples	Traverse
677– 679	Ħ
694- 695	11
267-273	Puente de El Callao
276-278	n
359- 361	Pela Bollo
340- 354	11
376-379	Veta Maestre
384	Ħ
405	Quebrada de Oro
455- 458	n
518-520	Carichapo Fault Zone
546-549	tt

It is expected that intermediate drilling at these sites would find Au mineralization. A regional exploration program should drill a few of the most extended anomalous sections to test the correctness of this interpretation.

Anomalies that are interpreted as reflecting mineralization at considerable depth are the sections represented by samples 174 to 224 within the Yuruary-El Peru-Mocupia traverse and samples 270 to 466, and to the south, within the Puente de El Callao traverse. Before doing any drilling at these sites, regional extension of these anomalies should be studied, because only deep boreholes are expected to find mineralization. On the other hand, these are large anomalies that because of their position resemble most the very rich mine of El Viejo Callao.

CONCLUSIONS

The analysis of geological, geochemical and chemical data presented in this work has led the author to draw four main conclusions:

- 1. The geochemical surface expression of the gold mineralization of El Callao district varies greatly with the level of dissection presented by today's surface. Au, Ag, Hg, Pb, and Zn, in that order characterize the mineralization if dissected through the zone of gold deposition. As, V, and Mn characterize the mineralization if dissected well above the zone of gold deposition. Intermediate dissection levels will be shown by a combination of elements of the two levels, and would commonly include Cu, Ni, and Co.
- The El Callao mining district is by no means considered explored, and the several anomalies outlined in this work prove that it deserves an investment in a comprehensive exploration program.
- 3. Within the El Callao district two types of vegetation are found, jungle and savanna. If soil samples are collected in such a way so as to evade lateritic crusts, the general pattern of expression of mineralization is maintained going from soils developed within a vegetation type to the other.

Cu, Zn, Mn, and Ni are generally depleted in the soil with respect to the rock on which the soil develops, while Pb is concentrated, and Co remains essentially the same.

4. The apparent order of deposition of elements, from high to low temperature, within a hydrothermal system, can be explained by considering the chemical system formed by a solvent of changing characteristics and solutes that fit more or less comfortably in it depending upon the type of bonds that form them.

As the temperature of water is increased its dielectric constant is lowered and charged ions will tend to associate to form uncharged species. The water will also lose some of its effective polarity and become a better solvent for polar-covalent compounds such as silicates and sulfides.

As the temperature of water is decreased, these polar-covalent compounds will precipitate in an order that depends on their (b) character and on their concentration in solution. An approximate order for El Callao district is Au, Ag, Hg, Cu, Pb, Zn, As, Mn and V; and it is not expected to change grossly for hydrothermal deposits in general.

RECOMMENDATIONS

It is felt that on the basis of the present work several suggestions for further work are in order:

Field

- Extension of the study of the surface geochemical expression of hydrothermal mineralizations to include other elements such as Si, Cr, Ti, S, and Cl to see how they fit into the haloes.
- Study within the El Callao district the location of unfound mineralization by geochemical soil sampling using Mn, Hg, Pb and Au as indicator elements of different mobilities.

Laboratory

- Study the effects of ionic strenth at high temperature on the dielectric constant of ionic solutions.
- 2. Study the effects of the change of dielectric constant of the

solvent on the solubility of ionic, covalent, and polar-covalent compounds of different combinations of oxidation numbers of the constituent atoms.

- 3. Study the possibility of uncharged soluble complexes of the metals Au and Ag with soft bases in water at high temperatures.
- 4. Study the solubility variation of SiO₂ (total) with different concentrations of ions common to hydrothermal fluid inclusions.
- 5. Study the solubility variation of common metal sulfides with different concentrations of SiO₂ (total).

APPENDIX

Collection of Samples

This work is based upon results of analytical work done on samples of soils and rocks taken along traverses across known and suspected auriferous veins, across fault zones, and irregularly over all geologic formations within the 8000 square kilometers covered by the geologic map of Menendez V. de V. ("no date", circa 1970).

Eight traverses were sampled, the position of each traverse is shown in the plate (back pocket) together with the number of samples involved (print out, back pocket). Traverses were first established by cutting small paths with machetes, and were then surveyed geologically and sampled. Typical information gathered for every 50-meter interval was distance from origin of traverse, direction of traverse, mean slope in degrees from the horizontal, maximum slope direction, rock type, presence of vein quartz, shearing, hydrothermal alteration, presence of prospecting pits, houses, water courses and their directions of flow, and type of vegetation.

Along traverses, one soil sample was taken to represent every 50meter interval. Each sample was made up of four subsamples taken roughly at 12.5-meter intervals. The subsamples, approximately equal in

size, were collected on a sheet of plastic, broken up, and quartered at the end of each interval, and put into numbered plastic bags. Soil samples were taken at a depth of 10 to 15 centimeters where, in most instances, the visible organic matter had greatly diminished or disappeared.

The rock and soil samples over all geologic formations of the area were collected in an irregular fashion dictated by easy access, reduced chances of contamination, and distance from other equivalent samples taken. The location of these samples is shown on the plate (back pocket).

Analytical Methods

The content of the elements Be, W, Bi, Mo, Sn, Hg, Au, Ag, Cu, Ni, Pb, Zn, As, Mn, and V was estimated by emission spectrography using a variation of a comparative method described by Ward and others (1963, p. 91-94). Most adaptations of the method were taken from Larry Jennings of Earth Sciences Inc. of Golden (1971, personal communication).

Air-dried soil samples previously passed through an 80-mesh plastic screen were hand pressured into a lower graphite electrode (National, AGKS, L 4309) 1/4-in. in diameter with a thin-walled cup of 6 mm, set against an upper electrode (National, AGKS, L 4303) 1/8-in. in diameter with a 120° point, burned for 10 seconds without any preburn in a 1.5-meter Jarrel-Ash Wadsworth-mounted grating spectrograph, at 10

amperes and 220 volts d.c., and using no filter. The spectrum was recorded on Kodak SA #1 film. The spectra of samples were compared visually with the spectra of standards using a comparator with 20X magnification. The standards were constructed diluting commercially available mixtures of spectroscopically pure compounds with spectroscopically pure quartz. It has not been found necessary to mix the samples with graphite because, for the type of samples studied, the matrix changes do not introduce larger errors than the visual comparisons.

The observed limits of detection (in parts per million) by this method for the elements studied and lines used are as follows: As, 200; Pb, 5; Au, 5; Hg, 5; Mn, 10; Bi, 20; Cu, 1; Ag, 1; Be, 100; Zn, 50; Ni, 20; Co, 20; V, 20; Sn, 50; Mo, 20; and W, 100. The standards were prepared in the following concentrations in parts per million (ppm): 0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, and 5000.

The elements Be, W, Bi, Mo, Sn, Hg and Au were found to be below the limit of detection of the emission spectrography method described in all samples of soils and rocks. Of those elements Hg and Au were considered of critical importance for this investigation and were determined in selected samples by atomic absorption spectrometry using the methods of Pyrih and Bisque (1969 and 1970) and Thompson and others (1968) respectively. The limit of detection observed for both Hg and Au as determined by atomic absorption spectrometry was 0.01 part per million.

Presentation of Data

The large number of data obtained by emission spectrography for the soil samples of the traverses are printed out by computer and included in the back pocket. In this form, samples are organized in groups corresponding to the traverses located in the plate (back pocket), and are ordered by their position within the traverse.

Each sample is identified by its number, distance from the origin of the traverse, mean slope in degrees (+ if above the horizontal, if below horizontal), presence or absence of vein quartz (Q or Z respectively), presence or absence of prospecting pits (P or N respectively), and the concentration in ppm of Cu, Fb, Zn, Mn, V, Ni and Co (when an element was not detected it is given an arbitrary value of 1 ppm). At the end of every traverse the average and standard deviation for every element are listed. These same data are plotted so that the abscissa represents distance and the ordinate the concentration of the elements (see graphs in the back pocket); in this form the data can be quickly interpreted.

The Hg and Au contents of the selected samples of soils will be included in the print out (back pocket), but will not be averaged. Since 1 ppm is a large value for Hg, some samples where Hg was not detected are distinguished by the letters ND.

The analytical data of rocks and soil samples collected for the purpose of establishing background values and studying the effects of weathering are tabulated (see p. 54), and ordered by geologic formations from which they were derived.

Sample	Rock or	Cu	Pb	Zn	Mn	V	Ni	Со	Hg	Au	Mineral.		
No.	Soil	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Carich	Carichapo Group												
490 428 429 491 El Cali	R S S S lao Fo	120 10 150 70	nd 15 nd 15 on	150 nd nd nd	300 200 <u>3</u> 00 300	250 50 110 190	150 10 60 30	40 nd 40 50	0.00 0.00 0.00	0.01 0.00 0.00	X X X X		
172A 585A 620A 621A 627A 629A 702A 726B 681 700 720 295 425 425 426	R R R R R R R R R R S S S S S S	350 350 350 350 400 450 450 350 70 70 90 200 300 300	nd nd nd nd nd nd nd nd nd nd nd nd nd n	100 100 100 100 100 100 100 100 100 100	300 500 500 500 500 500 500 250 250 250 400	300 400 250 300 350 300 350 250 90 120 80 250 350 350	200 150 200 180 200 200 200 200 200 200 200 200 100 40 170 160 300	40 60 60 60 60 60 60 60 60 50 70 150	0.00 0.00 0.00 0.00 	0.00 0.01 0.01 0.04 0.00 0.01	X V V V V V X X X X X V V		
<u>Сісар</u> га 403 446А 447А 452 728	R R R R S S	20 20 20 50 70	30 40 30 20 10	nd nd nd nd	220 200 250 150 150	300 250 300 100 60	50 30 50 30 30	nd nd nd 10	0.00 - 0.00 0.00 0.00	0.01 0.00 0.00 0.00 0.01	V V V X X		
<u>Yuruary</u> 4444 373А 386А 545А 547А 420 × 421	r Form R R R R R R S S	20 190 180 40 90 4 4	60 nd 10 20 15 10	nd 100 150 nd nd nd nd	200 250 200 400 350 250 100	200 200 80 180 100 40 40	30 150 400 20 20 nd nd	nd 140 60 140 nd nd	0.00	0.00	X X V X X X X		

Analytical Background Values for the El Callao Area. Table.

•

	Sample	Rock	c Cu	Pb	Zn	Mn	V	Ni	Co	Hg	Au	Mineral.
	No.	Soi]	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
	Yuruar	y For	mation	(cont:	inued)							
X	42 2	ន	50	70	nd	80	300	120	nd	0.00	0.00	x
Х	423	S	10	30	nd	80	80	10	nd	0.00	0.00	X
	444	S	10	70	nd	150	150	20	nd		-	Х
	424	S	300	nd	50	150	150	150	nd		-	v
	419	S	300	70	50	150	300	170	60	-	-	v
	443	S	150	75	nd	140	200	60	nd	-	-	v
	445	S	150	80	nd	300	250	130	70	-	-	V
Caballape Formation												
	433	R	20	15	nd	160	200	30	nd	-	-	X
	431	S	80	80	nd	150	250	40	nd	0.00	0.00	X
	432	S	90	20	nd	70	80	40	nd	-	-	X
	436	S	10	30	nd	70	120	10	nd	-	-	X
	438	S	10	15	nd	. 70	80	10	nd	-	-	X
	439	S	150	80	nd	150	300	150	20	-	-	X
	441	S	180	nd	1 50	180	220	150	70		-	X
	Supamo Complex											
	416	S	4	20	nd	10	70	nd	nd	0.15	0.00	X
	418	S	3	15	nd	110	nd	nd	nd	-	-	Х
	427	S	80	15	nd	190	100	20	nd	0.00	0.04	Х
	430	S	5	90	nd	150	40	nd	nd	0.00	0.00	Х
	435	S	20	15	nd	30	70	10	nd	-	-	X
	Acidic	Intr	usives	(Mand	ingal S	Stock)						
	493	R	2	10	nd	110	7 0	nd	nd	0.00	0.02	X
	409	S	2	15	nd	50	nd	nd	nd		-	Х
	727	S	2	5	nd	15	nd	nd	10	0.00	0.00	Х
Metamorphosed Basic Intrusives (Ibm)												
	21 3A	R	190	15	50	350	200	300	60	-		Х
	235A	R	180	10	100	350	3 00	150	60	-	-	Х
	281A	R	110	nđ	nd	300	200	110	60	-	-	х
	330A	R	160	nd	nd	250	30 0	50	30	-	-	X
	<u>440</u> а	R	700	30	150	500	110	700	180		-	v
	232	S	80	nd	nd	180	70	<u>ь</u> о	80	-	-	х
	330	S	60	20	nd	300	200	20	40	-	-	X
	434	S	180	15	nd	300	400	160	120	-	-	x
	440	S	400	nd	nd	800	250	400	200	-	-	v
	Note:	(nd)	under d	etecti	lon lim	nit, (X	() not	mine	ralizo	ed, (V) mine	eralized.

SELECTED REFLEENCES

- Ahrland, S., Chatt, J., and Davies, N.R., 1958, The relative affinities of ligand atoms for acceptor molecules and ions: Chemical Society of London, Quarterly Reviews, v. 12, p. 265-276.
- Anhaeusser, C.R., Mason, Robert, Viljoen, M.J., and Viljoen, R.P., 1969, A reappraisal of some aspects of Precambrian geology: Geological Society of America, Bulletin, v. 80, p. 2175-2200.
- Barnes, H.L., and Czamanske, G.K., 1967, Solubilities and transport of ore minerals, in Barnes, H.L., editor, 1967, Geochemistry of hydrothermal ore deposits: New York, Holt Rinehart and Winston, p. 334-381.
- Bellizzia, Alirio, 1969, Mapa geologico de la Republica de Venezuela: Caracas, IV Congreso Geologico Venezolano.
- Bernet, Edmond, 1925, Les mines d' or de la Guyane Venezuelienne: Journal Le Genie Civil, 9 p.
- Bisque, R.E., 1970, Reconnaissance geochemical study: El Callao Area: Caracas, Ministerio de Minas e Hidrocarburos, private report.
- Bisque, R.E., Pasquali, Jean, and Pyrih, R.Z., 1972, in preparation.
- Bloom, Harold, 1955, A field method for the determination of ammonium citrate soluble heavy metals in soils and alluvium: Economic Geology, v. 50, p. 533-541.
- Boletin de Geologia, 1970, Lexico estratigrafico de Venezuela: Boletin de Geologia, Publicacion Especial No. 4, 756 p.
- Chase, R.L., 1965, El complejo de Imataca, la anfibolita de Panamo y la tronjemita de Guri: Rocas precambricas del cuadrilatero de Las Adjuntas-Panamo, Edo. Bolivar, Venezuela: Boletin de Geologia, v. 7, no. 13, p. 103-215.
- Cobble, J.W., 1966, High temperature aqueous solutions: Science, v. 152, p. 1479-1485.

- Cotton, F.A., and Wilkinson, G., 1967, Advanced inorganic chemistry: New York, Interscience, 1136 p.
- Duparc, L., 1922, Les roches vertes et les filons de quartz aurifere du Callao au Venezuela: Schweizer Min. u. Petr. Mitt. (Geneve), v. 2, p. 1-68.
- Emmons, W.H., 1937, Gold deposits of the world: New York, McGraw-Hill, 562 p.
- Geoscience Inc., 1966, Report of phase one: Geological and economic evaluation of the El Callao gold mining district, Venezuela: Caracas, Ministerio de Minas e Hidrocarburos, private report.
- Harrison, J.B., 1933, The katamorphism of igneous rocks under humid tropical conditions: London, Thomas Murphy Co., 79 p.
- Hasted, J.B., Ritson, D.M., and Collie, C.H., 1948, Dielectric properties of aqueous ionic solutions. Parts I and II: Journal of chemical Physics, v. 16, p. 1-21.
- Kalliokoski, J., 1965a, Geologia de la parte norte-central del escudo de Guayana, Venezuela: Boletin de Geologia, v. 7, no. 13, p. 29-104.
- Kalliokoski, J., 1965b, Geology of north-central Guayana Shield, Venezuela: Geological Society of America, Bulletin, v. 76, p. 1027-1050.
- Kraus, K.A., and Raridon, R.J., 1960, Anion exchange studies XXXI. Adsorption of Zn (II) and Ga (III) from HCl solutions in the temperature range 25 to 150 °C: Journal of the American Chemical Society, v. 82, p. 3271-3276.
- Locher, Eugenio, 1972, Oro en Venezuela, in preparation.
- Martin-Bellizzia, Cecilia, 1968, Edades isotopicas de rocas venezolanas: Boletin de Geologia, v. 10, no. 19, p. 356-380.
- Mason, Brian, 1966, Principles of geochemistry: New York, Wiley, 329 p.
- McDougall, I., Compton, W., and Hawkes, D.D., 1963, Leakage of radiometric argon and strontium from minerals in Proterozoic dolerites from British Guiana: Nature, v. 198, p. 569-574.
- Menendez V. de V., Alfredo, 1968, Revision de la estratigrafia de la provincia de Pastora segun el estudio de la region de Guasipati, Guayana Venezolana: Boletin de Geologia. v. 10, no. 19, p. 309-338.

- Menendez V. de V., Alfredo, 1969, Guia de la excursion geologica Guasipati-Canaima: Caracas, IV Congreso Geologico Venezolano, 7 p.
- Menendez V. de V., Alfredo, and Benaim, N. Ch., 1969, Mapa geologico de la zona minera de El Callao y alrededores: Caracas, IV Congreso Geologico Venezolano.
- Nason, A.P., Quesada, A., Lopez, V.M., Dennen, W.H., and Roth, J., 1968, Ensayos de prospeccion geoquimica para oro en el distrito de El Callao, Venezuela: Geos, no. 18, p. 24-40.
- Newhouse, W.H., and Zuloaga, Guillermo, 1929, Gold deposits of the Guayana Highlands, Venezuela: Economic Geology, v. 24, p. 797-810.
- Olmeta, M.A., 1968, Determinacion de edades radiometricas en rocas de Venezuela y su procedimiento por el metodo K/Ar: Boletin de Geologia, v. 10, no. 19, p. 339-344.
- Ovchinnikov, L.N., and Grigoryan, S.V., 1971, Primary halos in prospecting for sulphide deposits: The Canadian Institute of Mining and Metallurgy, Special Volume II, p. 375-380.
- Park. C.F., Jr., and MacDiarmid, R.A., 1970, Ore deposits: San Francisco, Freeman, 522 p.
- Pasquali, Jean, Lopez, C.E., and Meinhard, Hernani, 1972, La meteorizacion del granito de La Paragua: Boletin de Geologia, Publicacion Especial No. 5, in press.
- Pearson, R.G., 1963, Hard and soft acids and bases: Journal of the American Chemical Society, v. 85, p. 3535-3539.
- Polikarpochkin, V.V., and Kitaev, N.A., 1971, Endogenic halos of epithermal gold-bearing deposits: The Canadian Institute of Mining and Metallurgy, Special Volume II, p. 381-383.
- Prue, J.E., 1958, Ion association: Chemical Society of London, Annual Reports, v. 55, p. 14-27.
- Pyrih, R.Z., and Bisque, R.E., 1969, Determination of trace mercury in soil and rock media: Economic Geology, v. 64, p. 825-828.
- Pyrih, R.Z., and Bisque, R.E., 1070, Determination of trace mercury in soil and rock media- A reply: Economic Geology, v. 65, p. 358-3 59.
- Snelling, N.J., 1963, Age of the Roraima formation, British Guiana: Nature, v. 198, p. 564.

- Thompson, C.E., Nakagawa, H.M., and VanSickle, G.H., 1968, Rapid analysis for gold in geologic materials, in Geological Survey Research 1968: United States Geological Survey, Professional Paper 600-B, p. 130-132.
- Ward, F.N., Lakin, H.W., Canney, F.C., and others, 1963, Analytical methods used in geochemical exploration by the U.S. Geological Survey: United States Geological Survey, Bulletin 1152, 100 p.

MARKED CO. PORT MODIFIE		state to 1		 state to 4		and 10.5	64.079 Ba. 8	Under ALL	inter to f	
in the second second	Charles and the second state of the second sta	MARTINE COLM	A ALENTIN LAND	 HEAR MOLE	commenter to the	Market States A	14 000000	Concerne Fact Stat	200000 X 00	
			Hill They lead	Manager and St.				Childrenn Children Children Children		
	El source March Barren Conservation and March March March March March Conservation		W/74-1	12-511-5 Contraction of Contraction				: Marcon Marcon Marcon		
Section 1			ulh a	. r					1	
				Construction Construction			and a second s		-	
	- DXXXXVY-		ACCOMPANY OF THE OWNER							
1018 10P01		785.0		 and the second	in a second s			· · · · · · · · · · · · · · · · · · ·		

T 1463 GRAPH LEGEND

				Zn	Ni	Co
lbm	metamorphosed, basic			200	200	200
lap	quartz porphyry granite			-100	-100	-100
S	Supamo complex					
С	Caballape formation			U	U	-0
Ру	Yuruary formation				Mn	V
PCc	Cicapra formation				۲ ⁴⁰⁰	200
PCec	El Callao formation				-200	- 100
	geologic contact					
_	fault				Ŭ	0
125	fault zone or shear zone)			Cu	Pb
	known mineralized vein				200	50
					-100	- 25
Z	Co	Ŧ	V		lo	Lo
X	Ni	+	Pb			
×	Zn	Δ	Cu			
\diamond	Mn	Ø	topographic	surfac	e	200 m
oncent	rations in parts per millio	on				
						0 -
		horiz	ontal distance			- • • • • -

T 1463 C.2 ('imputer phint mt of data ANTHUR LAKES LIBRARY ODLOBADO 2000

1

ħ

ARTHUR LAKES LIBRARY COLORADO SCHOOL OF MINES YURUARY - EL PERU - MOCUPIA GOLDEN, COLORADO

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S	DIST	4	3	ρ	CU	ρΕ	ΖN	MN	۷	NI	CO	HG	AU
	152	Ø	9	Z	Ν	5Ø	38	1	700	220	4Ø	60		
154 157 157 158 158 158 158 159 22 N 110 120 200 100<	153	50	2	Z	N	82	3/2	1	600	220	180	150		G
125 126 127 M 110 30 50 200 210 100 70 110 100 70 110 100 70 110 100 70 100	154	100	- 7	ź	ря в :	40	2%	-1	300	210	30	10	r no	no
136 223 1 1 1 32 50 400 224 60 80 marging 156 232 1 1 N 92 32 50 300 210 30 40 10 10 N 92 32 50 300 210 30 40 10 10 10 10 10 30 40 10 100 <	122	10%	2	t A	D D	110	3 <i>0</i> 77	50	500	210	100	/ 50		ne
150 320 1 N 92 32 50 300 210 30 40 Refulx 164 420 6 N 90 22 50 300 220 30 20 1 NO NO 1 150 300 220 30 20 1 NO NO 1 1 150 70 20 1 NO NO 1 1 150 10 100 NO NO 100 100 NO 100 NO 100 NO 100	120	260	-2	1	Г М		34	212 E 01	400	220	6 0	60	S E S	inon in indi
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	150	200	1, M	୍ୟ ମ	N	92	<u>২</u> ০	50 50	3000 300	240	30	40	R 22	, op
$ \begin{array}{c} 161 & 422 & 6 & 7 & N & 70 & 1 & 1 & 150 & 120 & 1 & 0 & 0 \\ 162 & 450 & 0 & 2 & N & 70 & 5 & 1 & 180 & 180 & 40 & 40 & 40 \\ 163 & 520 & 0 & 7 & N & 120 & 5 & 1 & 250 & 210 & 80 & 60 & 00 \\ 164 & 550 & 0 & 0 & N & 150 & 25 & 50 & 250 & 220 & 100 & 70 & 0 \\ 165 & 680 & 0 & 0 & P & 150 & 27 & 50 & 300 & 210 & 120 & 100 & 0 \\ 166 & 650 & 0 & 0 & P & 130 & 15 & 50 & 400 & 180 & 80 & 90 & 0 \\ 167 & 720 & 2 & 3 & N & 130 & 15 & 50 & 400 & 180 & 50 & 80 & 90 \\ 167 & 720 & 2 & 3 & N & 130 & 15 & 50 & 400 & 180 & 50 & 80 & 70 & 10 \\ 168 & 750 & 4 & 7 & N & 160 & 15 & 50 & 400 & 180 & 40 & 70 & 70 & 10 \\ 170 & 850 & 4 & 0 & N & 150 & 5 & 50 & 450 & 250 & 50 & 70 & 80 & 170 & 170 & 170 & 170 & 170 & 150 & 1 & 100 & 50 & 200 & 70 & 70 & 80 & 177 & 120 & -3 & 7 & N & 120 & 5 & 1 & 500 & 150 & 70 & 80 & 170 & 170 & 177 & 1200 & -3 & 7 & N & 120 & 5 & 1 & 500 & 200 & 70 & 70 & 70 & 70 & 70 & 77 & 11 & 170 & 170 & 176 & 1150 & 17 & N & 150 & 1 & 1 & 800 & 250 & 170 & 150 & 177 & 120 & 3 & 2 & N & 150 & 1 & 1 & 3000 & 350 & 150 & 160 & 0.000 & 0.0$	160	350	بلہ 1	n	N	90	20	50	300	220	30	20		els
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	161	400	¢.	7	N	70	1	1	152	70	20	1		. 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	162	450	ý.	7	N	70	5	1	180	180	40	40	Z O	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	163	500	ø	ž	N	120	5	1	250	210	8Ø	60	7	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	164	550	\mathcal{O}	0	N	150	25	50	250	220	100	70	10	60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	165	600	Ø	Ç	Ρ	150	28	50	300	210	120	100	Ŏ	ò.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	166	650	\mathcal{C}	7	N	120	15	50	400	180	8Ø	90	\mathbf{S}	
168 752 4 7 N 160 15 50 400 220 110 70 169 800 -7 2 N 130 5 50 400 250 60 60 170 850 4 0 N 150 5 50 400 250 50 70 70 171 900 -3 0 N 120 1 1 400 180 40 70 70 173 1200 4 2 N 140 1 1 2000 70 70 174 1250 2 N 140 1 1 2000 250 170 150 177 1200 4 2 N 140 1 1 3000 350 150 150 <	167	700	5	3	Ν	130	15	50	400	180	50	80	in in its second s	с 📰
169 800 -7 2 N 130 5 50 400 250 50 70 171 920 -3 N 120 1 1400 180 40 70 70 173 1720 -3 2 N 120 1 150 70 70 70 174 1750 2 N 120 1 1500 2200 400 30 176 174 1750 2 N 120 1 1400 200 40 30 176 170 150 177 1200 4 2 N 140 1 3000 350 150 0000 0.00	168	75Ø	4	Z	Ν	16Ø	15	5Ø	400	220	110	70		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	169	800	-7	Z	N	130	5	50	400	250	6Ø	60	~	B
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	170	850	4	Q	N	150	2	50	450	250	50	710		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	171	900	-3	0	N	120	1	1	400	180	40	70		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	950	5) J	N.	120	2	1	500	150	70	30		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/3	1000	-3	オー	EN .	120	1	1	500	200	/ <u>/</u> /	70		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/4	12.50	2	£	N	1,12	4	1	400	200	4192 419973	470		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172	1100	4	t o	IN NI	150	4	1	2000	250	170	1.50		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177	1200	76	2 2	nv Ni	170	1	4	4000	250	350	250		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	178	1050	1	2	N	142	1	4	3000	180	170	140	0.000	0.000
1801350157N18015020003502501600.7000.6001811400-17N18015020003521701200.3000.0001821450-100N18015015003501501400.2500.0001831500-70N300510050004001801800.4500.0001841550-70N30051005000400120600.0000.0001851600-62N15011350350130700.1600.0001851600-62N15011350350130700.1600.00018615015015011350350130700.1600.000186150152N1801508004001801300.0000.0001831750152N1801508004001801300.0000.00018418001677180150200.0000.0000.00018518001677180150200.0000.0000.000191190016 <t< td=""><td>179</td><td>1300</td><td>10</td><td>7</td><td>N</td><td>160</td><td>1</td><td>1</td><td>3000</td><td>350</td><td>180</td><td>150</td><td>0.000</td><td>0.000</td></t<>	179	1300	10	7	N	160	1	1	3000	350	180	150	0.000	0.000
181 1400 -1 2 N 182 1 50 2000 350 170 120 0.300 0.000 182 1450 -10 N 180 1 50 1500 350 150 140 0.250 0.000 183 1500 -7 0 N 300 5 100 5000 400 180 180 0.450 0.000 0.000 184 1550 -18 7 N 150 1 1 800 350 150 130 0.500 0.000 0.000 185 1620 -6 2 N 150 1 1 350 130 70 0.150 0.000 0.000 0.000 0.000 185 1620 107 180 107 100 0.000 <	180	1350	15	7	N	180	1	5Ø	2000	350	250	160	0.700	0.000
1821450-100N1801501500350150140 0.250 0.000 1831500-70N300510050004001801800.450 0.000 1841550-187N15011800350150130 0.500 0.000 0.000 1851600-67N150155055740012060 0.000 0.000 1851600-67N1501135035013070 0.150 0.000 1851600-67N180150700400170130 0.000 0.000 187170060N180150800400180130 0.000 0.000 1831750157N180150800400180130 0.000 0.000 184185027N18010200 0.000 0.000 0.000 1831750157N18010 0.000 0.000 0.000 18418502N1503010 0.000 0.000 0.000 1941920107N1853511001 0.150 0.000 1	181	1400	-1	7	N	180	1	50	2000	350	170	120	0,300	0.000
1831500-70N 300 5 100 5020 402 180 180 0.450 0.000 1841550 -18 7N 150 11 800 350 150 130 0.500 0.000 185 1620 -6 7N 150 15 550 400 120 60 0.000 0.000 186 1650 47N 150 1 1 352 350 130 70 0.150 0.000 187 1700 60N 180 1 50 700 400 170 130 0.160 0.000 183 1750 15 7N 180 1 50 800 400 180 130 0.000 0.000 183 1750 15 7N 180 1 50 800 400 180 130 0.000 0.000 189 1800 10 7 P 180 30 50 180 400 150 20 0.000 0.000 194 1850 2 7 N 152 35 1 90 250 400 1 0.150 0.000 194 1900 10 2 N 185 35 1 100 30 1 0.000 0.000 194 2050 102 2 N 110 5 1 30 <	182	1450	-10	0	N	180	1	50	1500	350	150	140	0,250	0,000
184 1550 $=18$ \neq N 150 1 1 800 350 150 130 0.500 0.000 185 1600 -6 \neq N 150 15 50 550 400 120 60 0.000 0.000 186 1650 4 \neq N 150 1 1 350 350 130 70 0.150 0.000 187 1700 6 0 N 180 1 50 700 400 170 130 0.160 0.000 0.000 183 1750 15 \neq N 180 1 50 800 400 180 130 0.000 0.000 0.000 183 1750 16 \neq N 150 35 1 90 250 40 1 0.300 0.000 0.000 194 1900 10 \neq N 165 1 30 170 30 1 0.250 0.000 0.000	183	1500	-7	Q	Ν	300	5	100	5000	400	180	180	0,450	0,000
1851600-6 2 N1501550550400120600.0000.00018616504 Z N15011350350130700.1500.000187170060N1801507004001701300.1600.000183175015 Z N1801508004001801300.0000.000189180010 Z N1801508004001801300.0000.000191180010 Z N152351902504010.3000.000191190010 Z N18535110035012010.1500.000192195000N90151301703010.0000.000192195000N90151301703010.0000.000193200023 Z N110513015010010.1500.000194205010 Z N801115803010.2500.0001952100-23 Z N1401180120301<	184	1550	-18	7	Ņ	150	1	1	800	35Ø	150	130	0,500	0,000
13616504 χ N15011350350130700.1500.000187170060N1801507004001701300.1600.000183175015 χ N1801508004001801300.0000.000189180010 γ P1803050180400150200.0800.000191190010 χ N185351902504010.3000.00019219500 Ω N92151301703010.0000.00019219500 Ω N92151301703010.0000.00019219500 Ω N92151301703010.0000.00019219500 Ω N92151301703010.0000.000193200023 Z N110513015010010.1500.000194205010 Z N1401116010.2500.0001952150-16 Z N14011801203010.2500.000 <td>185</td> <td>1600</td> <td>-6</td> <td>Z</td> <td>N</td> <td>150</td> <td>15</td> <td>50</td> <td>550</td> <td>400</td> <td>120</td> <td>60</td> <td>0.000</td> <td>0.000</td>	185	1600	-6	Z	N	150	15	50	550	400	120	60	0.000	0.000
187 1700 6 $\ensuremath{\mathbb{Q}}$ N 180 1 50 700 400 170 130 0.160 0.000 0.000 183 1750 15 $\ensuremath{\mathbb{Z}}$ N 180 1 50 800 400 180 130 0.000 0.000 0.000 189 1800 10 $\ensuremath{\mathbb{Z}}$ P 180 30 50 180 400 150 20 0.080 0.000 192 1850 2 $\ensuremath{\mathbb{Z}}$ N 152 35 1 90 250 40 1 0.300 0.000 191 1900 10 $\ensuremath{\mathbb{Z}}$ N 185 35 1 100 350 120 1 0.150 0.000 192 1950 0 $\ensuremath{\mathbb{N}}$ N 185 35 1 30 170 30 1 0.000 0.000 192 1950 20 N 90 15 30 170 30 1 0.000 0.000 193 2000 23 $\ensuremath{\mathbb{N}}$ N 140 1 150 <td>186</td> <td>1650</td> <td>4</td> <td>Z</td> <td>N</td> <td>150</td> <td>1</td> <td>1</td> <td>350</td> <td>350</td> <td>130</td> <td>70</td> <td>0,150</td> <td>0.000</td>	186	1650	4	Z	N	150	1	1	350	350	130	70	0,150	0.000
183 1750 15 2 N 180 1 50 800 400 180 130 0.000 0.000 0.000 169 1800 10 7 P 180 30 50 180 400 150 20 0.080 0.000 0.000 192 1850 2 2 N 152 35 1 90 250 40 1 0.300 0.000 191 1900 10 2 N 185 35 1 100 350 120 1 0.150 0.000 192 1950 0 0 N 92 15 1 30 170 30 1 0.000 0.000 192 1950 0 0 N 92 15 1 30 150 100 1 0.150 0.000 193 2000 23 7 N 140 1 150 100 1 0.250 0.000 194 2050 -18<	187	1700	6	Q	N	180	1	50	700	400	170	130	0,160	0.000
1891800107718003050180400150200.0000.000192185027150351902504010.3000.000191190010718535110035012010.1500.000192195000N90151301703010.0000.0001932000237N110513015010010.1500.0001942050102N801115803010.0000.0001942050102N801115803010.0000.0001952130-237N14051602104010.2500.0001952130-237N14011801203010.2500.0001962150-187160150250110110101972200-187180150250110101982250-27N12051150609011992300100N1001170301 <td>188</td> <td>1750</td> <td>15</td> <td>Z</td> <td>Ŋ</td> <td>100</td> <td>1</td> <td>50</td> <td>800</td> <td>400</td> <td>180</td> <td>130</td> <td>0,000</td> <td>000</td>	188	1750	15	Z	Ŋ	100	1	50	800	400	180	130	0,000	000
192 1850 $2 \times N$ 152 35 1 90 250 40 10,300 0,000 191 1900 10 2 N 185 35 1 100 350 120 1 0,150 0,000 192 1950 0 0 N 90 15 1 30 170 30 1 0,000 0,000 193 2000 23 7 N 110 5 1 30 150 100 1 0,150 0,000 194 2050 10 2 N 80 1 1 15 80 30 1 0,000 0,000 194 2050 10 2 N 80 1 1 50 210 40 1 0,250 0,000 195 2100 -23 7 N 140 1 1 80 120 30 1 0,250 0,000 196 2150 -18 7 160 1 50	109	1800	10	7	r N	100	30 7≣	50	100	400	190	20	0,000	0.000
191 1950 10 2 N 105 33 1 100 350 120 100 1000 0.000 192 1950 0 0 N 90 15 1 30 170 30 1 0.000 0.000 193 2000 23 Z N 110 5 1 30 150 100 10.000 0.000 194 2050 102 Z N 80 1 1 50 100 10.000 0.000 194 2050 102 Z N 800 1 1 150 200 10.250 0.000 195 2100 -23 Z N 140 1 1 80 120 30 1 0.250 0.000 196 2150 -18 Z 140 1 150 250 110 10 10.250 0.000 197 2200 -18 <	172	1070		*	N N	190	32 75	1	₩ 0 4 03 03	250	490	4	0,000	0,000
193 2000 23 Z N 110 5 1 30 150 100 1 0.150 0.000 0.000 194 2050 10 Z N 80 1 1 15 80 30 1 0.000<	100	1052	10	t	i N M	105	48	4	100	470	120		0 000	0,000
194 2050 10 2 N 80 1 1 15 80 30 1 0.000 0.000 195 2130 -23 2 N 140 5 1 60 210 40 1 0.250 0.000 196 2150 -18 2 N 140 5 1 60 210 40 1 0.250 0.000 196 2150 -18 2 N 140 1 1 80 120 30 1 0.250 0.000 197 2200 -18 2 N 180 1 50 250 110 110 10 198 2250 -2 2 N 120 5 1 150 60 90 10 198 2250 -2 2 N 100 1 1 70 60 90 10 199 2300 10 0 N 100 1 1 60 90 1 <td>127</td> <td>2000</td> <td>্যু</td> <td>7</td> <td>N</td> <td>110</td> <td>L, S</td> <td>4</td> <td>30</td> <td>150</td> <td>100</td> <td>1</td> <td>0.150</td> <td>0.000</td>	127	2000	্যু	7	N	110	L, S	4	30	150	100	1	0.150	0.000
195 $2130 - 237$ N 140 5 1 60 210 40 1 0.250 0.000 196 $2150 - 16$ N 140 1 1 80 120 30 1 0.250 0.000 197 $2200 - 187$ N 140 1 1 80 120 30 1 0.250 0.000 197 $2200 - 187$ N 180 1 50 250 110 110 10 198 $2250 - 277$ N 120 5 1 150 60 90 10 199 2300 10 N 100 1 1 70 60 90 1 207 $2350 - 577$ N 100 1 1 60 70 20 1 201 $2400 - 177$ N 80 1 1 60 70 20 1 202 $2450 - 377$ N 100 1 1 150 70 30 1	194	2000	10	2	N	80	1	4	15	80	30	1	0.000	0.000
196 2150 -18 N 140 1 1 80 120 30 1 0.250 0.000 197 2200 -18 N 180 1 50 250 110 110 10 198 2250 -2 Z N 120 5 1 150 60 90 10 199 2300 10 N 100 1 1 70 60 90 1 200 2350 -5 7 N 100 1 1 60 90 1 201 2350 -5 7 N 1 1 60 70 20 1 201 2400 -1 Z N 80 1 1 60 70 20 1 202 2450 -3 Z N 100 1 1 150 70 30 1	195	2100	=23	7	N	140	5	1	60	210	4ø	ī	0.250	0.000
197 2200 -18 2 N 180 1 50 250 110 110 10 198 2250 -2 2 N 120 5 1 150 60 90 10 199 2300 10 0 N 100 1 1 70 60 90 1 201 2350 -5 7 N 70 1 1 60 90 1 201 2400 -1 7 80 1 1 60 70 20 1 202 2450 -3 7 100 1 1 150 70 30 1	196	2150	-18	3	N	140	1	1	80	120	3ø	1	0.250	0,000
198 2250 -2 Z N 120 5 1 150 60 90 10 199 2300 10 0 N 100 1 1 70 60 90 1 207 2350 -5 Z N 70 1 1 60 60 20 1 201 2420 -1 Z N 80 1 1 60 70 20 1 202 2450 -3 Z N 100 1 1 150 70 30 1	197	2200	-18	ž	Ν	18Ø	1	5Ø	25Ø	110	110	10		A MAR LOU IN
199 2300 10 Q N 100 1 1 70 60 90 1 200 2350 -5 Z N 70 1 1 60 60 20 1 201 2400 -1 Z N 80 1 1 60 70 20 1 202 2450 -3 Z N 100 1 1 150 70 30 1	198	2250	-2	7	N	120	5	1	150	60	9Ø	10		
208 2350 -5 7 N 70 1 1 60 60 20 1 201 2400 -1 7 N 80 1 1 60 70 20 1 202 2450 -3 7 N 100 1 1 150 70 30 1	199	2300	10	Q	Ν	100	1	1	70	60	9 Ø	1		
201 2400 -1 Z N 80 1 1 60 70 20 1 202 2450 -3 Z N 100 1 1 150 70 30 1	23%	2350	-5	7	N	7 Ø	1	1	60	60	20	1		
202 2450 -3 7 N 100 1 1 150 70 30 1	201	2400	-1	7	N_	80	1	1	60	70	20	1		
	202	2450	-3	7	N	100	1	1	150	70	30	1		

4 1 3

S	UIST	A	()	Ρ	CŲ	PB	ΖN	MN	۷	NI	C O	HG	AU
223	2500	-2	2	N	80	1	1	150	6Ø	30	20		
224	2550	-6	7	N	120	1	1	180	100	50	30		
205	2600	-9	Э	N	110	1	1	15Ø	100	4 Ø	20		
226	2650	Ø	7	N	150	5	1	300	150	120	30		
207	2700	-13	أن	Ŋ	7 Ø	1	1	250	150	30	10		
208	2750	-2	7	N	110	1	1	150	190	7 Ø	10		
209	2800	- 2	7	N	1.20	10	1	350	25Ø	110	20		
210	2850	- 4	7	N	120	>	1	150	110	110	20		
211	2900	1	ź	۳. ۸.	130	12	50	350	200	150	80		ett
212	2950	2	t.	NI NI	110	12	1	350	200	100	70	0,450	0.000
210	3000	1	Ľ,	14	400 400	1.2 7 @	1	320	200	40	60	0,120	0,000
215	2400	1	t v	D	150	ು <i>ಳ</i> ⊀ 55	1	2720	300	120	110	0,170	0,000
216	3150	4	2	, q	122	1~	لد اه	100	300	110	120	0,170	0,000
217	3200	۳ ج	2 2	N	125	- 1	4	400	110	1 1 0	70	0 000	0 000
218	3250	6	2	N	80	*	4	300 70101	70	- T 0 0	60	0,000	0.000
219	3320	6	~ 7	N	150	1 0	1	3000	150	180	150		
220	3350	6	7	N	180	-4-≈ 1-⊘	4	1500	240	180	120		
221	3420	5	7	N	180	5	1	500	150	180	120		
222	3450	5	Ŧ	P	162	5	1	450	120	170	- 90		
223	3500	10	Z	Ρ	300	5	1	700	200	210	120		
224	3550	ຶ5	7	Ν	150	1	1	300	60	170	80	0.250	0.000
225	3600	-11	Z	Ν	170	5	1	300	110	190	160	0.150	0.010
226	365Ø	-12	Z	N	160	5	1	400	110	18Ø	160	0.300	0,000
227	3700	=13	7	Ŋ	160	5	1	300	70	160	80	0.250	0.000
228	3750	-9	₹	Ρ	180	4 🖉	1	450	150	1 8Ø	150	0,250	0,000
229	3800	-11	Z	P	140	5	1	300	120	15 Ø	80	0,250	0,000
230	3850	-11	Z	P	90	10	1	400	150	4Ø	60	0.000	0,000
231	3900	7	ź	N	60	1	1	190	80	20	30	0,000	0,000
232	3950	5	7	P	80	1	1	180	70	40	80	0,000	0,000
200	4000	Ø	7	N.	110	1	1	100	50	30	30		
234	4600	1	Ź フ	IN N	4 2 0	1	1	170	60	30	30		
230	4100	ľ	2	N	160	+	1	1/0	10	40	30 00		
230	4120	C A	2	P	4 2 2	त्रीय अप्	 	120	9 <i>0</i> 9 <i>0</i>	30 40	20		
238	4250	7	7	N	110	4	4	170	60	40	20	0 250	0.010/
239	4320	4	7	Ň	80	1	4	120	60	30	20	0.670	CICIC.
240	4350	-1	7	N	120	1	1	150	50	30	20		
241	4400	1	Z	N	130	5	1	400	300	5ø	80		
242	4450	2	7	N	120	5	1	330	150	8Ø	70		
243	4500	3	Z	N	120	1	1	300	120	40	30		
244	4550	4	7	N	157	1	1	250	120	120	40		
245	4630	- 4	Z	N	150	5	1	400	80	150	70		
245	4550	-6	7	N	130	1	1	400	8Ø	150	80	0.000	0,000
247	4720	-17	7	N	170	5	1	400	90	150	90	0.000	0,000
248	4750	-12	Q	N	90	5	1	1100	150	300	180	0.000	0.000
249	4800	-7	3	H	360	5 Š	1	1100	180	400	200	0,000	0.010
228	4850	-1	Z	N	80	ç	1	400	180	200	100	0.000	0.040
201	4900	Ø	7	N	15	1	1	300	200	40	50	0.000	0.020
225	4470	k)	Z	N	УŊ	2	50	700	220	300	140	0,000	0.0401

•

• YURVARY - EL PERU - MOCUPIA

S	CIST	A	Q	Р	CU	P3	ZN	MN	V	NI	CD	HG	AU
253	5000	-1	72	N	50		1	400	120	30	30	0.260	3,200
254	5050	2	7	Ν	90	5	1	600	200	300	150	0.160	1.000
255	5100	-2	7	N	50	5	1	400	150	5Ø	70	0.310	3,250
256	5150	-1	7	N	7 Ø	32	100	500	180	60	60	9.990	3.450
257	5290	Ä	ñ	P	70	4 Ø	300	500	150	60	150	1.400	0.600
258	5250	5	0	P	70	30	150	500	180	50	90	0.000	0.480/
259	5320	-5	0	Р	7 7	~ <u>5</u>	50	400	180	50	90	0.150	0.050
260	5350	- 1	Ô	N	100	5	100	300	150	200	150	0.500	0.320/
261	5400	-4	0	Р	100	1	1	600	200	200	100	0.370	0.040
553	5450	-2	n	Р	160	1	1	300	250	120	70	0.370	0.400
554	5500	ã	n	N	130	1	1	250	210	110	60		
555	5550	-2	Ő	Ρ	70	1	1	190	150	40	60		
556	5600	6	7	N	180	10	50	250	300	180	70		
557	5650	-3	ž	N	130	1	1	150	250	80	30		
553	5700	2	7	N	120	1	1	250	140	90	60		
559	575Ø	ē	7	N	160	1	1	250	150	120	70		
560	52110	2	7	N	160	1	1	250	90	15Ø	110		
561	5850	ē	Z	N	15%	10	1	400	220	130	90		
562	5920	-1	2	Ρ	150	1	1	300	250	120	7Ø		
563	5950	-1	Ĝ	N	110	1	1	500	120	80	60		
564	6222	1	7	N	120	1	1	300	120	6Ø	60		
565	6050	2	7	N	110	1	1	300	180	5Ø	4Ø		
566	6100	Ø.	Z	ĵ.	130	1	1	300	210	6Ø	40		
567	6150	- 4	7	N	180	1	1	300	180	130	60		
568	6222	5	7	N	130	1	1	300	110	120	80		
569	6250	3	Z	N	130	4	ī	400	100	110	80		
570	6300	4	7	N	130	4-1 <u>1</u>	1	350	150	80	70		
571	6350	7	3	N	140	1	1	350	250	5Ø	60		
572	6400	3	Q	N	180	1	1	400	250	150	90		
573	6450	2	3	Ν	170	1,	1	400	200	160	80		
574	650Ø	2	Z	Ν	160	1	1	600	250	110	80		
575	6550	- 6	Z	Ν	150	1	5Ø	800	300	60	80		
576	6600	10	9	N	130	1	1	400	350	14 Ø	120		
577	665ð	12	Q	Ν	400	1	100	800	300	140	120		
578	67ØØ	-5	7	N	182	10	100	700	400	12Ø	120		
579	675Ø	5	7	Ņ	182	1 3	50	700	450	120	70		
580	6800	-1	2	N	180	5	50	700	400	130	70		
581	6850	-14	Ą	N	182	1	5Ø	700	350	15 Ø	80		
582	6900	-10	Q	Ν	150	न्त्रे प्रो	100	700	300	15Ø	110		
583	695Ø	8	Ĵ	Ň	160	1	50	600	250	120	80		
584	723Ø	8	Q	N	170	1	100	800	400	12Ø	90		
585	7050	6	Q	N	150	1	50	600	250	120	80		
586	7100	4	G	N	170	10	100	700	350	150	110		
587	7150	12	Z	Ē i	180	1 🖉	100	800	300	150	150		
588	7200	-7	7	N	7 Ø	10	1	400	300	20	20		
589	7250	- 4	7	N	140	10	1	400	350	4 Ø	70		6
590	7300	8	Z	N	70	1	1	600	250	20	20	ND	0.050
591	7350	12	2	N	150	1	1	400	300	40	70	0.000	N.020'
592	7432	11	Z	N	72	1	1	400	150	30	60	0.000	0,000
593	7450	-14	Z	Ν	140	10	1	700	300	110	60	0,000	0.000

ي د •

• YURUARY - EL PERU - MOCUPIA

\$	CIST	A	Q	۴	αU	PB	ΞN	MN	۷	NI	C O	HG	AU
594	7500	-15	Z	N	Sãã	15	100	400	400	150	80	0.000	0.010-
595	7552	-5	7	tų.	200	15	100	550	400	160	50	0.000	0.020
596	7600	-3	Z	Ŋ	20Ø	15	150	700	400	200	16	0.000	0.000
597	7650	3	2	t i	20Ø	15	100	1100	400	190	170	0.600	0.000
598	77ØØ	-1	Z	Ν	180	15	- 1	1500	250	182	180	ND	0.000
599	7750	-8	7	N	80	5	1	150	250	8Ø	10	0.000	0.000
620	7800	-7	7	Ν	120	5	1	400	300	80	55	ND	0.050
601	7850	-2	Z	Ν	170	5	1	55Ø	300	120	60		
602	7900	-2	Z	Ŋ	180	5	100	180	180	100	60		
603	7950	2	Ĵ	Ρ	150	10	100	400	300	9 Ø	80		
624	8722	4	7	Ν	150	1	1	600	300	12Ø	70		
605	8250	-8	Z	Ν	180	5	100	600	250	130	80		
606	8100	-10	3	Ρ	100	*	1	250	200	30	60		
769	8150	Ø	Ĵ	Ρ	500	7 🖗	100	350	300	200	7 Ø		
627	8500	7	Ž	Ņ	150	15	1	300	210	17Ø	70		
608	8250	4	Û	Ν	130	18	1	350	21Ø	15Ø	80		
609	8300	-5	Q	N	500	5	150	400	250	300	150		
612	8350	-10	ņ	P	110	1	1	15Ø	300	160	2Ø		
611	8400	-28	3	N	150	15	1	9Ø	100	40	10		
612	8450	10	0	N	110	5	1	400	25Ø	15Ø	90		
613	8520	4	0	N	120	5	1	50Ø	250	150	120		
614	8554	6	3	N	130	10	1	600	300	160	140		
615	8600	5	Q	Ŋ	130	10	1	600	300	160	140		
616	8650	6	Q	N	130	12	1	600	300	120	70		
617	8700	. 8	Q	F	180	1 2	1	700	250	150	150		
018 (10	8750	12	Ĵ.	P	100	1.%	1	700	250	150	130		
019	8300	11	1	N	190	10	1	700	300	150	110		
620	0000	12	Q A	N 8.t	100	12	1	800	300	150	120		
620	0000 6400	10	(J)	N N		1	1	400	250	130	110		
622	07990 0700	9 0	اد. د	ny M	120	1	1	700	250	130	100		
620	2000 0053	0		N I	110	+	1	500	250	110	00		
625	3090 04010	13	્યું જ	N N	₩162 10/%	4	1	120	100	40	20		
625	9100	0 5	14	N N	2 (A 2 (A)	.+	1	300	128	100	0 KI		
620	0200	5	्र ज	N	20	1 1	4	4 K (X	90 07	20	14	0 000	0.000
628	2250	10	2	РТ А]	9.7	يىلد 1-	4	100	4 6 0	6 0 80	60	0,000	0 0 0 0
629	9320	12	<u>г</u>	N	70	4	4	370	100	40	40	0,200	0 000
630	9350	14	÷.	N	120	ŝ		400	150	150	70	0,000	0.070
631	2400	- 6	7	N	70	1		120	80	100	40	0 500	0.010/
632	9450	8	7	N	20	1	1	80	80	30	1	0,000	0.020
633	950Ø	13	7	N	4	1	1	30	1	10	1	0.000	0.000
634	9550	18	7	N	20	1	1	40	1	30	1	0.000	0.000
635	9600	- 8	7	Ν	60	1	1	60	10	40	1	an F an o th	- -
636	9650	-13	7	N	70	1	1	7 Ø	20	110	10		
637	9700	-8	Z	Ρ	160	5	ĩ	220	100	190	70		
638	9750	-20	7	N	150	1	ī	150	90	150	40		
639	5 8ØØ	-8	Z	М	18	12	100	400	190	210	80		
642	985Ø	-12	Z	N	20	. 1	1	150	80	110	2Ø		
641	99ØØ	-13	Z	Ν	32	1	1	BØ	30	30	1		
642	9950	-6	Z	N	4 2	1	1	120	40	30	10		

•

,

• YURUARY - EL PERU - MOCUPIA

PAGE 5

S	OIST	A	Q	Р	Cu	PB	ZN	ΜN	۷	NI	CO	HG	AL
643	12000	-10	Z.	Ν	22	1	1	80	20	3Ø	1		
644	10050	-11	Z	Ν	9 Ø	1	1	25Ø	130	15 Ø	70		
645	10100	-12	7	Ν	150	1	1	600	210	180	80		
646	10150	-17	Z	N	152	1	1	45Ø	28Ø	160	70		
647	10200	1	7	N	150	1	1	300	35Ø	150	70		
648	10250	-6	7	N	140	1	1	350	400	150	60		
649	12300	-8	7	Ν	150	1	1	400	350	150	70		
650	10350	2	7	N	300	1	1	700	300	210	150		
651	10400	-14	7	Ν	10	60	1	300	70	20	10		
652	17450	-12	7	N	110	5	1	400	300	150	70		
653	10500	-8	7	N	120	1	1	300	200	110	50		
654	10550	-16	7	N	130	1	1	400	220	110	60		
655	12600	=10	Ţ	Ň	80	1	1	300	210	80	30		
656	12650	-11	7	N	90	Ĕ.	4	300	220	5ø	60		
657	10790	-12	7	N	160	5	1	400	220	150	80		
658	10750	20	0	N	70	1	1	300	120	40	30		
659	10800	24	ő	N	110	4	4	400	210	110	30		
66%	10850	-8	2	N	9 0	4	4	300	150	70	30		
661	17070	4 3	2	N	70	4	4	370	120	30	30		
662	10050	L U K	$\overline{\mathbf{z}}$	N	150	4 Z	4	600	250	140	70		
663	11000	- 8	4	N	160	4 2	4	800	300	150	82		
661	44050	-10	с. Т	N	4 V U	4	4	6000	300	60	90 90		
445	11010	- <u>1</u> 6	2 2	1.1	00	र्थ अ	یلہ ج	500 500	700	60	90 97		
600	11100	- 4 7	т. Т.	N	0 0		*	500	200	60 60	00 00		
600	111.20	-13	7. 0	N	2 ¥. 8 ¢	<u>ال</u> م	4	250	260	50 50	70		
449	11200	- 2	194 	A i	4 5 Ω	ية. *	ж. А	520 600	250	440	017		
000	11220	= 4	्यु ->	iv N	120	र्म ब	1.	400	200	110	20		
003	11300	-0	ť:	IV NI	0 Q 4 (3 (2)	1	1	300	300	30			
674	11000	-11	- (A 	NI NI	100	یلور ج	1	320	300	70	70		
0/1	11400	14		EN I	110	4	بلہ م	1000 1000	700	100	70		
0/2	11470	12	- t.	Ni Ni	120	1	1	400	300	120	710		
6/3	11500	- /	ť,	1M Ni	120	1	ļ	400	280	100	14		
0/4	11550	-0	ť.	IN Ni	00	1	1	220	250	4 12 73 03	40		
6/5	11600	-1V	÷.	N.	90	1	1	300	300	10	50		
676	11650	-12	0	N.	90	1	1	120	150	40	30		
0//	11/00	2	ť	iA iA	100	2	1	400	190	40	80		
0/0	11/20	2	ų,	N.	10	1	1	500	200	30	40		
679	11800	3	t	14	121	2]	500	200	00	00		
680	11850	11	Z	N	90	1	1	190	150	50	30		
681	11900	9	9	N.	10	1	1	220	90	30	40		
682	11950	8	- 72	N	70	1	1	220	100	40	30		
683	12200	14	Z	N	150	1.	1	400	120	150	80		
684	12250	16	Z	N	120	1.	1	300	120	120	30		
685	12100	18	Q	ÎN.	130	1	1	250	150	120	60		
686	12150	19	Z	N	142	1	1	350	250	150	70		
637	12200	-11	7	N	9 Ø	1	1	150	80	50	30		
668	12250	-24	Z	N	60	1	1	100	30	30	10		
689	12300	-22	7	N	150	r 1 791	1	400	180	150	120		
690	12350	-18	7	Ŋ	120	+ 	1	350	150	8 Ø	40		
691	12400	-18	7	Ν	150	1	1	250	120	15 Ø	60		
692	12450	-11	Q	Ν	192	1	1	250	200	180	80		

U.

• •

• YUPUARY - EL PERU - MOCUPIA

S	OIST	A	Q	Ρ	CU	PB	ΖN	MN	۷	NI	CO	HG	AU
693	12500	-8	Z	N	72	1	1	150	80	4 Ø	20		
694	12550	-7	Z	Ń	150	1	1	300	180	150	80		
695	12600	2	Z	Ν	110	15	1	300	180	150	60		
696	12650	5	2	N	90	1	1	180	150	40	30		
697	12700	2	2	N	40	1	1	150	80	40	20		
698	12750	- 1Ø	7	N	4 2	1	1	150	60	40	20		
699	12800	=13	7	Ν	120	1	1	150	100	100	40		
700	12850	-19	7	N	70	1	ĩ	200	120	100	60		
701	12900	-12	Ž	N	150	1	1	300	120	150	80		
702	12950	-2	7	N	100	1	ī	300	100	120	20		
703	13280	-2	7	N	92	1	1	220	150	100	10		
704	13250	-1	7	N	100	4	1	250	80	5 Ø	2ø		
705	13100	- 4	7	Ŋ	140	1	1	400	100	120	70		
706	13150	-3	7	N	100	1	ī	250	100	40	20		
707	13200	-2	7	Ív	100	1	1	25Ø	150	120	30		
708	13250	4	Z	N	60	1	1	200	120	40	30		
709	13300	- 5	Z	N	7 🖉	1	1	200	90	5 Ø	20		
710	13350	-5	Z	Ņ	40	1	1	120	60	20	10		
711	13400	-8	Z	Ν	120	1	1	250	80	120	70		
712	13450	-5	Z	Ν	80	1.	1	300	90	30	20		
713	13500	-2	7	Ν	90	1	1	250	100	2Ø	10		
714	13550	-2	2	Ņ	120	1	1	300	120	5Ø	30		
715	13600	-1	7	N	160	1	1	400	300	15Ø	80		
716	13650	Ø	2	Ν	150	1	1	300	200	120	40		
717	13700	-1	Z	Ν	9 %	1	1	250	150	3Ø	20		
718	13750	-2	Z	N	98	1	1	15Ø	100	20	1		
719	13800	-2	7	Ν	6 Ø	1	1	15Ø	90	20	1		
720	13850	-1	7	Ν	96	1	1	25Ø	8Ø	4 Ø	50		
721	13900	-3	Z	N	130	1	1	300	100	60	70		
722	13950	-6	Q	N	70	1	1	150	8Ø	40	10		
723	14000	-3	Q	N	140	1	1	300	150	100	90		
724	14050	-5	Z	Ν	150	1	1	250	120	150	90		
725	14120	-6	ា	N	110	1	1	3ØØ	100	100	60		
726	14150	-8	()	Ν	150	20	1	200	80	120	60		
AVEF	RAGESI				122	5	14	45Ø	190	102	65		
STAP	IDARD D	DEVS	;		55	9	34	534	98	63	44		

PUENTE EL CALLAD

.

,

S	DIST	A	\$	٩	CŲ	P8	ΖN	MN	۷	NI	сo	HG	AU
466	Ø	5	9	N	150	15	1	14Ø	21Ø	30	1		
467	5 0	11	Q	r,	7 🗘	4	1	30	25Ø	10	1		
468	120	22	Q	Ν	22	1	1	20	150	1	1		
469	150	18	Q	Ê.	10	1	1	15	110	1	1		
47Ø	220	5	Q	N	7 Ø	5	1	60	150	10	1		
471	250	Ø	Q	Ν	6 🖗	15	1	7Ø	220	20	1		
262	300	- 4	0	Ŋ	20	20	1	140	200	4 Ø	1		
263	350	1	Q	Ν	90	3Ø	1	150	200	25Ø	1		
264	400	-12	Z	Ν	80	10	1	150	500	35Ø	1		
265	450	-10	Q	Ν	80	30	1	100	300	7 Ø	1		
266	500	-13	Q	Ν	80	20	1	150	250	5Ø	20		
267	550	-16	3	N	302	4 🖉	50	300	300	15 0	30		
268	620	7	7	Ν	5Ø	12	1	500	15Ø	100	70		
269	65Ø	6	Z	Ν	450	4 🕅	50	5000	250	500	500		
27Ø	730	5	2	Ν	600	25	50	1000	250	500	150		
271	750	12	7	N	700	25	50	1500	200	500	170		
272	820	10	Z	Ы	5 00	20	120	1500	200	300	170		
273	850	7	7	Ŋ	400	12	50	1500	2110	300	170		
274	900	10	Z	N	400	10	50	9ØØ	200	250	150		
275	950	12	z	Ń	4ØØ	10	1	900	200	250	150		
276	1000	4	Z	Ŋ	400	2 Ø	5Ø	1500	200	4 ØØ	300		
277	1050	- 4	Z	Ν	800	20	1	2000	150	50Ø	200		
278	1100	-11	2	N	500	2⊘	1	1000	150	300	150		
279	1150	-13	Z	N	50Ø	25	1	1500	250	300	150		
280	1200	-16	0	Ν	480	25	1	1500	300	300	15Ø		
281	1250	-18	Q	r.	500	4 19	50	1500	300	300	150		
282	1320	- 7	Ĵ	Ν	50Ø	25	1	1500	400	300	150		
283	1350	7	3	Ν	602	25	50	1500	500	300	150		
AVER	AGESI				314	19	21	933	240	227	106		
STAN	DARD	DEVS	1		240	11	30	1035	95	169	114		

. LAGUNA DIKE

PAGE 1

AU

•	S	DIST	A	Ŋ	Ρ	CU	PВ	ΖN	MN	۷	NI	CO	HĢ
	298	5Ø	5	2	N	200	20	1	250	300	160	20	
	297	100	-5	7	N	180	15	1	200	200	150	30	
	296	150	- 1	7	Ν	180	15	1	300	200	170	70	
	295	200	-2	7	N	222	14	1	250	200	470	79	
	294	250		7	N	182	45	4	250	250	170	00	
	293	300	- 4	z	N	180	70	100	200	200	450	4 Ø	
	292	350	-2	7	Ň	167	16	100	540	400	150	100	
	234	100		10 12	Ň	100	# 	4 12 01	270	100	120	4 V 4 (7	
	290	450	- 3	2 2	N	450	48	150	150	220	100	4 10 (7)	
	289	500	2	2	N	160	45	50	200	200	100	60	
	288	550		1	N	160	15	ي ر ا	250	200	100	70	
	287	600	1. 1	2	N	150	45	4	250	490	A (X	70	
	286	650	â	7	N	70	4 2	4 (7) 2	500	150	70	150	
	285	720	4	7	N	50	25	100	700	100	1 (X	25	
	284	750	2	7	N	4	25	4	150	4 4 0	25		
	299	800	5	ā	Ν	22	20	-	150	150	20	10	
	320	850	5	ñ	ΔĮ.	1 0	16	-t- 1	120	1 1 0	10	191	
	321	922	-6	Ô	N	10	15	4	100	400	10	40	
	302	950	-3	a	Ŋ	10	15	1	150	100	10	1	
	323	1000	- 7	ã	N	10	16	1	150	100	10	1	
	324	1050	-5	7	NI.	10	15	1	250	300	10	10	
	325	1100	2	7	N	52	16	4	250	75	20	1	
	306	1150	=1	7	N	50	16	1	250	75	20	1	
	307	1200	1	Q	N	7 Ø	15	1	250	80	40	10	
	308	1250	-3	7	N	50	18	1	250	70	40	10	
	309	1300	- 2	7	Ν	50	16	1	250	70	40	10	
	310	1350	-1	Z	N	82	15	5Ø	250	90	40	10	
	311	1400	-1	Z	N	8Ø	- 5	1	250	6Ø	40	10	
	312	1450	-1	Z	N	40	1	1	200	50	1	1	
	313	1520	- 1	7	Ν	42	1	1	250	70	2ø	ī	
	314	1550	2	Ĵ	N	42	1 Z	1	250	70	20	1	
	315	1600	1	Z	N	42	-1	1	250	70	20	1	
	316	1650	1	Z	Ν	4 Ø	1	1	250	70	20	20	
	317	1700	1	Z	N	5Ø	5	1	250	100	30	20	
	318	1750	1	Z	N	15	1	1	250	70	20	2Ø	
	319	1800	2	0	Ν	15	1	1	250	60	2 Ø	20	
	320	1850	1	7	Ν	15	2⊉	1	250	130	20	20	
	321	1900	2	Q	Ρ	52	5	1	250	140	30	20	
-	322	1950	1	7	Ν	7 Ø	20	1	25Ø	150	20	20	
	323	2000	-1	Z	Ŋ	60	5	1	25Ø	150	20	20	
	324	2050	Ø	7	N	60	5	1	250	100	20	20	
	325	2100	-1	\tilde{t}	N	80	5	1	250	100	3Ø	30	
	326	2150	1	Z	N	50	5	1	250	70	10	20	
	327	2200	- 4	Q	Ņ	90	15	1	300	25Ø	30	50	
	328	2250	- 7	Q	N.	120	2%	1	35Ø	300	6Ø	150	
	329	2300	- 4	ł	N	7 Ø	20	1	400	400	30	80	
	330	2350	R	Z	N	60	2 🖉	1	300	200	20	40	
	331	2400	-3	Z	N	70	6 🕅	1	500	200	4 Ø	50	
	332	2450	-1	Ω	P	80	6 Ø	1	500	200	100	80	
	AVER	AGESI				79	15	11	258	150	53	32	
	, gan () ;	in the second				· *	ala ***	* *	e.,	ada art br	- 0		
	STAN	CARD D	EVS	1		61	14	30	82	8Ø	53	34	

PELA BOLLO

.

•

S	DIST	A	3	Ρ	CU	ΡΒ	ZN	MN	۷	NI	¢¢	HG	AŲ
352	Ø	3	â	N	10	1	1	150	20	1	1		
351	50	2	2	N	10	1	1	100	10	1	1		
350	190	- 1	7	N	15	1	1	150	50	2ø	1		
349	150	-2	7	N	12	1	1	100	50	20	1		
348	200	-3	7	Ν	15	10	1	250	75	40	30		
347	250	-1	3	N	20	15	1	300	120	4Ø	30		
346	300	-2	3	Ν	80	1	1	300	100	40	70		
345	350	2	Q	N	80	1	1	300	15Ø	40	70		
344	400	-7	Ł	Îγ	150	5	1	250	300	40	70		
343	450	Ø	Z	N	140	1	1	275	250	15Ø	80		
342	500	-5	Z	N	140	1	1	200	100	150	80		
341	550	- 4	Ģ	Ν	140	18	1	250	150	15Ø	70		
342	600	3	Ĵ	Ν	140	1.2	1	5ØØ	200	15 Ø	150		
339	650	5	7	N	15Ø	15	1	500	300	1,50	150		
338	700	- 4	1	Ν	150	12	1	500	300	150	150		`
337	750	6	7	N	140	15	1	700	25Ø	150	160	ND	0,000
336	820	7	Q	N	150	1	- 1	300	150	150	110	ND	0.000
335	85Ø	-1	C	N	150	12	1	300	170	150	150	ND	0.000
334	900	5	Ŵ	N	150	2	1	220	110	120	130	ND	0.010
333	950	2	(C	N	130	12	1	700	250	150	200	ND	0,010'
353	1000	- 4	G	N	120	2	- 1	500	200	150	150		
354	1050	-3	3	1.4	110	2	1	300	300	110	50		
322	1100	-1	Q	N N	120	1	1	300	300	100	50		
320	1150	-1	t	' \ ⊼∃	120	1	1	500	180	190	70		
32/	1200	1	Ť.	i Ni i Li		7	1	400	220	120	<i>7€</i> 007		
320	1520	2	 	i N Ni	100	4	1	120	120	120	04		
327	1300	12	 	N N	1/0	4	200	120	100	180	Å		
364	1000	- 7	14 15	N	200	-t- -t-	200	450	490	150	വി		
360	1400	-0	୍ ଓ ମ	n v Ni	150	4	یا۔ ۴	140	70	140	20		
362	1520	5	0 1	N	180	-se -∎ Ø	4	150	4 01 01	150	1		
364	1550	-12		N	180	12	1	150	150	120	1		
365	1622		n	N	200	15	1	200	200	180	1		
366	1650	-8	7	N	160	±~ 1		250	200	180	50		
367	1700	=3	7	N	180	30	4	300	200	40	50		
368	1750	-2	- 	N	60	49	1	250	70	20	1		
369	1800	-5	ž	N	170	15	50	300	180	100	60		
370	1850	é	7	N	180	5	1	300	150	160	80		
371	1900	-1	ť	Ν	300	20	15Õ	400	200	250	150		
372	1950	ø	Q	Ν	300	1 8	1	300	150	190	150		
AVER	AGESI				136	7	10	289	167	114	68		
STAN	DARD (DEVS	:		69	8	39	143	82	62	58		

MAESTRE VEIN

.

٠

5	DIST	A	Q	Ρ	CU	P 8	ΖN	ΜN	v	NI	CO	HG	ΑU
392	Ø	Ø	7.	Ν	200	1	150	300	190	300	150		
391	50	1	7	N	300	1	120	300	80	200	90		
390	100	1	7	N	300	1	1 0 0	300	120	Zaa	70		
389	150	-4	Z	N	180	1	1	300	120	200	70		
388	200	-2	7	N	150	1	1	300	120	40	70		
387	250	1	7	Ν	100	1	**	300	180	100	60		
386	300	ø	7	N	120	1	1	300	150	1.50	70		
385	350	3	7	N	170	1	1	700	250	300	150		
384	400	1	7	N	170	10	140	800	250	300	150		
393	450	2	7	Ν	150	- 1	4	300	100	160	- 80		
382	500	-11	Z	N	160	1	1	400	150	170	80		
381	550	-10	ž	N	130	5	1	700	250	250	150		
380	600	- 3	3	N	100	40	1	300	200	4 0	10		
379	650	ž	-13	N	120	60	1	250	150	40	10		
378	700	16	ġ	Ν	190	80	1	250	25Ø	15 Ø	20		
377	750	14	0	Ν	180	40	1	200	200	250	20		
376	800	8	7	Ν	170	70	1	200	250	170	20		
375	850	Ø	7	Ν	180	20	1	400	200	190	70		
374	900	-1	G	N	170	1	ĩ	300	200	150	70		
373	95Ø	-8	្ឋ	Ν	160	4 2	1	400	250	170	70		
393	1000	-16	3	Ν	7 Ø	15	1	250	200	9 Ø	50		
394	1050	-8	Ĵ,	N	60	5Ø	1	300	220	30	10		
395	1100	-7	7	Ν	100	60	1	150	250	40	-1		
396	1150	-11	2	N	180	30	1	180	220	150	1		
397	1200	1	Z	N	180	32	1	300	220	150	25		
398	1250	-10	7	Ν	90	25	1	300	140	25	20		
399	1320	6	Z	Ν	80	52	1	300	150	25	20		
400	1350	2	7	Ν	20	2 Ø	1	100	140	20	1		
401	1400	11	ŧ	Ν	7 Ø	2∅	1	100	210	30	1		
AVER	AGESI				146	23	17	320	186	141	55		
STAN	DARD	DEVS	;		62	24	43	161	51	90	48		

LA CULEBRA

•

S	DIST	Ą	0	Ρ	Cυ	PB	ΖN	ΜN	۷	NI	CO	HG	AU
481	Ø	-1	Z	Ν	6	5	1	150	20	1	1	0.000	0,015-
482	50	-2	2	N	5	5	1	150	20	1	1	0.000	0.025
479	100	-2	7	Ν	7	15	1	180	30	1	1	0.380	0.030
478	150	Ø	Z	N	10	ŽØ	1	180	70	10	1	1.000	0.025
477	200	Ø	7	N	20	30	1	210	60	10	1	0.000	0.025
476	250	3	- ĝ	N	10	2Ø	1	210	55	1	1	0.000	0.025
475	300	3	7	Ν	4	5	ĩ	150	20	1	1	0.000	0.035
474	350	2	0	N	2	5	1	7 Ø	1	1	1	0.000	0.040
473	400	-1	3	N	5	15	1	9Ø	40	1	1	0 000	0.080
472	450	-1	0	Ρ	3	5	1	110	50	1	1	0.000	0.100
482	500	-3	0	Ρ	7 Ø	4 Ø	1	180	80	10	1	0.250	0.745
483	55Ø	Ø	3	Ν	22	25	1	200	40	10	1	0.390	0.280
484	600	-1	7	N	4	5	ī	150	30	1	1	0.000	0.020
485	650	-1	0	N	3	1	1	150	1	1	1	0.100	0.030
486	700	2	7	Ν	2	1	1	150	1	1	1	0.250	0.000
487	750	-1	0	ÍΝ	3	1	1	150	1	1	1	0.300	0.015
488	800	2	7	N	4	5	1	18Ø	1	1	1	0.300	0.020
489	850	-3	Z	Ν	4	1,	1	150	1	1	1	0.200	0,000'
AVER	AGESI				10	11	1	156	28	3	1		
STAN	DARD D	EVS	;		15	11	Ø	37	26	3	Ø		

QUEBRADA DE ORO

PAGE 1

S	DIST	A	Q	Ρ	CU	РВ	₹N	MN	۷	NI	CO	HG	AU
404	Ø	-7	ŋ	Ν	3	20	1	40	60	1	1		
405	50	-7	Q	N	4	70	1	50	100	10	1		
426	100	-5	0	N	3	30	1	40	70	1	1		
407	150	-3	7	N	3	15	1	40	20	4	1		
428	2010	-2	7	N	3	15	1	60	1	1	1		
429	250	-1	7	N	ž	15	1	50	1	4	1		
410	300	-1	7	N	2	15	1	5a	1	1	1	0.200	0.000
411	350	-1	7	N	2	30	1	120	20	1	1	0 300	0.000
412	400	-1	7	N	2	20	. 1	100	20	1	1	0.200	0.000
413	450	ø	ō	N	2	20	1	250	70	4	1	0.610	0.000
414	50º	C	Q	N	10	50	1	150	70	10	ī	0.390	0.000
415	550	6	0	Ρ	10	60	1	300	140	20	1	0.380	0.250/
446	600	10	õ	N	20	60	1	180	100	30	ī	0.250	0.200
447	650	_4	Ô	Ρ	90	60	1	300	160	150	60	0.000	0.000
448	700	Ø	Q	N	60	50	ī	300	150	150	40	0.000	0.000
449	75Ø	2	0	N	70	60	1	400	190	250	90	0.320	0.000
450	800	2	Q	N	7Ø	60	1	300	200	110	55	0.000	0.000
451	85Ø	ť	Q	N	40	30	1	160	150	25	1	0.000	0.000
452	900	=2	0	Ν	5Ø	20	1	150	100	30	1	0.000	0.000
453	95Ø	01	0	N	50	20	1	150	100	30	10	* * * * *	
454	1000	-2	0	11	50	30	1	210	110	40	40		
455	1950	-1	Q	N	70	60	1	300	200	110	60		- · · ·
456	1100	ø	Ô	Ρ	9Ø	40	ī	180	220	110	50		
457	1150	-3	Q	N	170	60	1	300	250	160	75		
458	1200	-5	Q	N	90	62	1	25Ø	250	60	30		
459	1250	-2	Q	N	90	55	1	400	250	40	30		
460	1300	1	Q	N	130	60	1	300	220	30	40		
461	1350	-1	0	Ν	120	60	1	300	230	30	50		
462	1400	-2	()	Ν	140	62	1	300	240	30	40		
463	1450	-1	Q	Ν	140	70	1	400	240	40	60		
464	1500	Ø	Q	N	120	80	1	300	230	100	60		
465	1550	Ø	7	Ν	150	82	1	300	220	100	60		
AVER	AGES:				58	44	1	210	136	52	27		
STANDARD DEVS:					53	21	Ø	116	86	61	28		

• !

د

CARICHAPO FAULT ZONE

- -

S	DIST	Д	C	Ρ	CŲ	PB	ZN	MN	۷	NI	CQ	HG	AU
552	Ø	-1	2	N	10	10	1	350	60	20	10		
221	20	-2	É	1.1	00	1	1	320	300	150	70		
220 540	100	-1	3	1N 6.1	1	12	1	182	40	10	1		
512	10%	-1	<i>É</i> 7	N N	1, K) 6 (X)	12	1	270	70	30	10		
540	200	-2	7	N	20 60	40 E0	1	300	100	30	10		
546	200	-4	_ <i>€</i> _ ∩	N	10	20 72 (2)	<u>ب</u> ۲	700	100	4 (2) 4 (3)	20		
545	350	7	୍	N	ي: چر	्र 15	1.	150	110	1.0	10		
544	420	5	- 19 - (3	N	4	20	4	120	40	10	10		
543	450	-1	n D	N	2	10	1	70	30	10	10		
542	500	2	Ó	N	3	12	1	72	10	10	10		
541	55Ø	1	a	N	2	1	1	60	1	10	10		
540	600	1	Q	Ν	3	1	ī	80	1	10	10	0.000	0.000
539	650	-1	Q	Ν	2	1	1	90	1	10	10	0.000	0.000
538	7ØØ	Ø	0	Ν	4	1	1	90	1	10	10		
537	75Ø	Ø	Q	Ν	3	15	1	150	5Ø	1	1		
536	8ØØ	. 1	Z	N	4	15	1	150	50	1	1		
535	850	1	3	N	2	15	1	140	10	1,	1		
495	900	Ø	Q	N	2	1	1	100	1	1	1		
496	950	Ø	Q	N	3	1	1	100	1	1	1		
497	1000	Ø	Z	N	5	15	1	150	10	1	1		
498	1000	1	ź	N	5	12	1	120	10	1	1		
499	1100	1	3	NI NI	3	12	1	120	10	1	1		
500 504	1122	<u>ح</u>	3	N N	4	12	1	120	70	30	1		
502	1250	-1	4 0	N	601 10	12	1	120	10	30			
503	1300	- 1	୍ୟ ଅ	N	80 80	25	1	210	450	180	30 40		
524	1350	1	0	N	80 	15	4	170	100	1,90	20		
525	1400		0	N	70	エイ マグ	·	2010	100	40	3₽ AØ		
526	1450	-1	â	N	20	20	-	150	70	25			
507	1500	й.	Ő	Ν	69	20	1	180	150	30	10		
508	1550	-3	å	N	80	20	1	150	150	40	10		
509	1600	-1	Q	Ν	70	20	5Ø	250	180	40	20		
510	1650	1	Q	Ν	3Ø	30	1	25Ø	150	30	20		
511	1700	Ø	Ŋ	Ν	20	42	1	220	9Ø	30	1		
512	1750	3	Q	Ν	20	42	1	220	9Ø	30	1		
513	1800	5	0	Ν	7Ø	40	1	15Ø	150	40	10		
514	1850	2	Q	N	80	30	1	2 2 Ø	120	7Ø	40		
515	1900	S	Ĵ,	N	60	15	1	180	100	140	20		
516	1950	4	0	N.	80	20	1	220	110	150	60	ب الان مع الم	
21/	2000	2	Q	N.	90	40	1	250	100	150	70	0.000	0,000
215 510	2000	-2	0	N N	100	2 0	1	250	110	120	40	0,100	0.000
503 503	215A 2100	1	4	EN NI	70 80	34 ≰01	1	700	120	220	200	0.370	000
521	2220		3	N	20 70	48	1	150		190	4 00	0.300	0 000
522	2250		á	h.	120	⊥~ 7Ø	501	200	200 776	100	7 (X)	0 100	N 1000
523	2320	- 4 Ø	2	N	120	15	50	300	140	170	AQ NA	0.100	N1000
524	2350	ē	27	N	1 50	15	1	300	150	90	30		
525	2400	3	ā	N	70	40	1	35й	100	110	80		
526	2450	2	3	Ν	70	30	1	300	80	110	30		

PAGE 2 CARICHAPO FAULT ZONE S DIST CO AGP PB HG Cu ΖN MN V NI AU Q N 4Ø 15Ø -1 -2 Q N Q N 5 Q N 2 Q N -3) N 5Ø -4 Q N -4 Q N SQ AVERAGES: STANDARD DEVS:

.