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ABSTRACT

3-D Structural and Seismic Stratigraphic Interpretation of the Guasare-Misoa Interval,

VLE 196 Area, Block V, Lamar Field, Lake Maracaibo, Venezuela. (December 2002)

Sadun Arzuman, B.S., Istanbul Technical University

Co-Chairs of Advisory Committee: Dr. Joel S. Watkins
Dr. Richard Gibson

In this study, the structure, depositional system, and the seismic stratigraphy of

the VLE 196 area, Block V in Lamar Field were interpreted using 3-D seismic data and

well logs to characterize structural and depositional settings of the Guasare-Misoa

interval.

To demonstrate structural settings of the study area 3-D seismic data were

interpreted. Three main seismic reflectors, which are the Late Eocene unconformity,

Guasare, and La Luna formations, were picked. The most dominant structure in the area

is the VLE 400 Fault which was interpreted as a left-lateral strike-slip reverse fault due

to its behaviors as a reverse fault in cross sections and as a strike-slip fault in strike

sections. The VLE 400 Fault subdivides the VLE 196 area into two main structural

blocks, a downthrown block in the western part and the upthrown block in the eastern

part of the field where the hydrocarbons were trapped. Several en echelon normal and

reverse faults were located along the both sides of the area. The main importance of

these faults are that they fractured the La Luna source rock and created migration

pathways through the reservoir layers of the Misoa Formation.
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To interpret depositional system of the Guasare-Misoa interval, tops of the C4

and C5 intervals and associated C4 layers were picked based on well logs and lithofacies

maps were prepared. The results of this part of the study show that the sandstones of the

Misoa Formation are delta front and fluvial/distributary channel facies of delta system.

The net sand thickness map of the C4 interval also exhibits southeast northwest contour

patterns reflecting depositional axes in the area. Shaly units of the C4 interval interpreted

as potential seals and are of variable thickness and extend.

Seismic stratigraphic interpretation of the area shows that the four main seismic

facies are dominant which mainly represent the recent sediments, “C” sands of the

Misoa Formation, underlying Colon and Mito Juan shales, and basement respectively.

Some distributary eroded channel fill structures were also observed within the Misoa

Formation, but they were not continuous through the area because of the intensive

faulting.
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CHAPTER I

INTRODUCTION

1.1 Objectives

The Lake Maracaibo Basin is one of the most prolific oil producing fields in the

world. Because of its complex structure, it is very important to understand detailed

relationships between fault networks and stratigraphy of the area for future field

development.

The Lamar Field is one of the most producing fields in the Lake Maracaibo

Basin, which is discovered in 1958. The use of 3D seismic data to interpret old

producing fields is very important in assessing in field development and the VLE 196

area exhibits one of the best examples of old producing fields. When integrated with

well log data, 3D seismic provides the best tool to determine the seismic stratigraphic

and structural framework for an area.

The main purpose of this study to define the structural and depositional settings

of the VLE 196 area and to demonstrate a seismic stratigraphic model for the Guassare-

Misoa interval within its depositional environment in the VLA 196 area, Block V, Lamar

Field. To do this, structure, depositional system, and seismic stratigraphy of the area

were interpreted using 3-D seismic data and existing well logs. Time horizons, faults,

_______________

The style and format of this thesis follow that of the Bulletin of the American
Association of Petroleum Geologists.
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seismic stratigraphic relations, and lithofacies were mapped. Results gathered from well

log interpretation correlated with seismic data and they were tried to determine possible

secondary recovery areas.

1.2 Location

The Maracaibo Basin is located in northwestern Venezuela, South America as

shown in Figure 1.1. The basin occupies an area approximately of 24,200 sq. ml. (62,000

sq. km.), of which about 5,000 sq. ml. (12,900 sq. km.) are covered by Lake Maracaibo.

Within the lake proper elevation is more than 328 ft. (100 m.) (Sutton, 1946). The basin

is limited to the north by the Oca fault, to the west by the Sierra de Perija, to the

southeast by Merida Andes Mountains, and to the east by Serrania de Trujillo.

The Maracaibo Basin is one of the most prolific oil-producing basins in the

world. Approximately 35 billion barrels (bbl) of oil have been produced from this basin

since 1946 and containing an estimated 200 billion stock-tank barrels of original oil in

place (Tyler et al., 1994) (Ambrose and Ferrer, 1997).

The Lamar field is owned and operated by Maraven S.A., one of the national oil

companies of the Venezuela which is responsible for operations in the Lake Maracaibo

and it is located in south central lake, in the eastern part of the Lama-Icotea fault. It

covers and area of 8,700 acres. The study area VLA 196, Block V is located in the

northwestern part of the Lamar field (Figure 1.1).
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 Figure 1.1 Location of the study area.
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1.3 Data Base

Data set used in this study includes seismic and well logs. The 3-D seismic

amplitude data covers an area of 37 km2 subset of the 609 km2 survey shot in the Lake

Maracaibo. Seismic survey was shot and processed by Western Geophysical in 1992.

The bin spacing of the data is 30 by 30 m and record length is 6.1 s. Detailed acquisition

parameters of time migrated seismic data are listed in Table 1.1. The reflection quality of

the data is very good and faults and stratigraphic picks for horizons are easily

recognizable (Holditch and Associates Inc., 1997).

24 well logs were used in this study to integrate seismic and well-log data. Well

data include time depth curves and digital well curves. These wells were drilled in the

western side of the study area, leaving the eastern side with no well control. Therefore,

well log analysis was done mainly for the area covered by well logs. Locations of the

wells are shown on the basemap in Figure 1.2 and well types are shown in Table 1.2.
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Table 1.1 3-D seismic data acquisition parameters for the VLE 196 area (Holditch and

Associates Inc., 1997).

Sampling rate 2 milliseconds

Record length 6.1 seconds

Energy source Air guns

Receiver and source array
East-West receivers and

North-South shots

Number of instrument channels 256

Line of configuration of 128

hydrophones

Distance between receivers 60 meters

Hydrophone frequency 10 Hz

Distance between receiver lines 600 meters

Patch 2 lines of 128 hydrophones each

Shot line 80 shots

Distance between shot points 60 meters

Distance between shot lines 240 meters

Bin size 30 m * 30 m

Coverage 8 * 4 = 3200%
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Table 1.2 Well log data used in this study. (ACAL: caliper, ASN: short normal

resistivity, LLD: laterolog deep resistivity, LN: log normal resistivity, LLS: laterolog

shallow resistivity, CNLLC: neutron porosity, RHOCN: bulk density, DT: sonic, GR:

gamma ray, (*): type log)

Well ID ACAL ASN LLD LN LLS CNLLC RHOCN DT GR

VLE 0096 x x x x x x

VLE 0196 x x x x

VLE 0400 x x x x

VLE 0449 x x x x

VLE 0504 x x x x

VLE 0506 x x x x

VLE 0510 x x x x

VLE 0516 x x x x

VLE 0571 x x x x

VLE 0619 x x x x

VLE 0631* x x x x

VLE 0651 x x x x

VLE 0674 x x x x

VLE 0675 x x x x x

VLE 0677 x x x x x x

VLE 0973 x x x x x x

VLE 1004 x x x x

VLE 1063* x x x x x x

VLE 1101 x x x x x

VLE 1130 x x x x x

VLE 1139 x x x x x

VLE 1140 x x x x x

VLE 1148 x x x x x

VLE 1155 x x x x x
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Figure 1.2 Seismic basemap showing the location of the wells. Enlarged figure shows the well data extend and locations of

cross-sections.
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CHAPTER II

BACKGROUND

2.1 Tectonic Settings

2.1.1 Plate-Scale Settings

It is accepted by most workers (e.g., Burke, 1988; Pindell and Barrett, 1990;

Montgomery et al., 1992) that the Caribbean region originated in the eastern Pacific and

was transported into its present position between the North and South American plates

along large-scale strike-slip faults and oblique subduction zones of Cenezoic age (Lugo

and Mann, 1995).

It appears from reconstructions (see Burke, 1988) that west facing coast of

northwestern South America rifted from the eastern margin of Mexico, and that the

north-facing coast rifted from Yucatan. Since that time, the west coast has develop as an

Andean margin that has experienced two arc collisions, while the north coast has

experienced intense deformation (Burke, 1988).

Figure 2.1 summaries Caribbean relative-motion history as follows: Jurassic

rifting accompanied rifting between the North and South American continents. Early-

Late Cretaceous passive margin subsidence followed rifting and the creation of oceanic

crust between North and South America and Paleocene-Eocene foreland basin
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subsidence followed the oblique collision of an Pacific-derived Caribbean plate with the

South American passive margin (Lugo and Mann, 1995).

The Proto-Caribbean ocean basin has been progressively consumed by

subduction beneath the Caribbean plate during Caribbean-American relative motion.

This subsidence diachronously produced numerous notable basins at the Caribbean Plate

boundaries during Caribbean migration and the following aspects of Caribbean evolution

may be particularly important for hydrocarbon potential:

The first is the Paleocene-Eocene opening of the Yucatan (Rosencrantz, 1990),

Grenada (Speed and Westbrook, 1984), and the early Cayman Trough basins

(Rosencrantz et al., 1988). Early deposition of these three basins may have occurred in

restricted conditions above stretched-arc or juvenile oceanic basement with high initial

heat-flow, and portions of these basins may therefore be prospective.

A second important aspect of Figure 2.1 is the probable onset of underthrusting

of Proto-Caribbean crust beneath northern South America in the Eocene, which Pindell

et al., (1991) interpreted as having caused moderate regional uplift and local erosional

shoaling, and widespread deposition of shallow-water sandstones along the Eocene shelf

section of eastern Venezuela and Trinidad (Pindell, 1991).
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        Figure 2.1 Four-stage depiction of the evolution of the Caribbean region (Pindell, 1991). 10
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2.1.2 Tectonic Evolution and Structural Settings of the Lake Maracaibo Basin

The Maracaibo basin is located within broad band of active deformation in the

center of the Maracaibo Block, a triangular lithospheric wedge of the northwestern South

America continent that actively “escaping” northward over a thinner crust of the

Caribbean Sea along the right-lateral Bocono and left-lateral Santa Marta-Bucaramanga

strike-slip fault zones (Mann and Burke, 1984) (Lugo and Mann, 1995).

Three principal deformation periods responsible for the present structural

configuration of the Maracaibo Basin (Figure 2.2).

The first period of deformation was a minor epirogenic uplift, which took place

during the Late Cretaceous and Paleocene. This period of deformation was responsible

for the formation of small anticlines and north-northeast-trending strike-slip and normal

faults (Icoeta, Sibucara, Sol, Pueblo Viejo) (Gonzales et al., 1980) (Azpiritxaga, 1991).

During this deformation, parts of the Venezuelan Andes and Perija Range began to

emerge as topographic highs. During the Cretaceous, the Maracaibo Basin began to

subside and eventually formed part of an extensive basin occupying the continental shelf

of proto-South America, to the east of the primitive Central Cordillera, the middle

Magdelena Basin and the Cesar Basin (Talukdar and Marcano, 1994).

The second deformation during the Late Eocene-Early Oligocene was related to a

northeastward compression against northwestern South America due to movement of the

Cocos plate and the northern part of the Nazca plate (James, 1990). During this time,

transverse faulting occurred, producing a major high in the center of the Lake Maracaibo

that is bounded on the west by Icotea fault. Transverse faults, mostly with left lateral
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Figure 2.2 Tectonic map of the Maracaibo-Falcon province showing zones in relation to

major fault trends (Modified from Molina, 1993).
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displacement, seal of the major oil accumulations in the basin such as, Tarra, Lama, and

Lamar oil fields (Delgado, 1993). During this deformation, structures developed earlier

were also reactivated. This deformation marked the structural inversion of the platform,

with the thickest Eocene section being deposited in the northeast, to an intermontane

foreland basin with the depocenter to the southwest (Zambrano et al., 1971) (Talukdar

and Marcano, 1994).

At the end of Upper Eocene, folding, faulting, and internal erosion took place.

The major geological feature was a north-northeast-trending anticlinal dome. A series of

en echelon faulted anticlinal folds located on the flanks of the structure (Delgado, 1993).

The post-Eocene structural phase was dominated by the uplift of the Sierra de Perija in

the west and the Merida Andes in the south. The formation of these two mountain ranges

also was responsible for numerous compressional faults parallel to the two ranges

(Stauffer and Croft, 1995).

The last period of deformation in the Miocene-Pliocene-recent is characterized

by intense structural development in the area and this deformation in general related to

the oblique compression of the Caribbean plate with respect to the South American

plate. Open folds, minor faults, and some uplifts were formed in the post-Eocene

sedimentary rocks as well as the reactivation of the earlier structures in Eocene and older

rock units. Compressional structures (such as thrust faults) developed at the north end of

the Venezuelan Andes and in the east end of the Perija Range and locally older

extensional structures became inverted. Therefore, the basin contains a variety of

structural trap types (Kulke, 1994). In the Maracaibo foreland basin, the general
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structure that related to this period is a southward-opening fan whose ribs are north-

northeast and north trending sinistral faults. Of these, the Icotea, left-lateral strike-slip

fault, which extends over 200 km, is the best known example (James, 1990) (Talukdar

and Marcano, 1994). This regime also produced a down-to-basin system of normal faults

that cut most of the Eocene section (Kulke, 1994).

During the last deformation period, the Maracaibo foreland basin became part of

an independent block or microplate that appears to have a northward translation toward

the Caribbean plate. This northward shift is due to dextral movement along the

northeast-southwest trending Bocono Fault, which extends through the entire

Venezuelan Andes. Transpression along this fault is the cause of uplift and

northwestward thrusting of the Venezuelan Andes against the adjacent Andean foredeep

in the south Maracaibo foreland basin (Talukdar and Marcano, 1994). The final uplift of

the Venezuelan Andes took place during this time, resulting in the current configuration

of the Maracaibo (Figure 2.3) (Delgado, 1993).
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Figure 2.3 Present structural styles in the Maracaibo Basin (Modified from Lugo, 1991).
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2.2 Sedimentary Basin Settings

2.2.1 Depositional System and Stratigraphy

The area of the Maracaibo Basin is approximately 23,572 sq. ml.  (61,45 sq.

km.), with the total drainage area of approximately 50,000 sq. km., of which about 5,000

sq. ml. (12,900 sq. km.) are covered by Lake Maracaibo which is connected to the Gulf

of Venezuela through the El Tablazo Bay (Sutton, 1946). The greatest known depth of

the lake is about 100 m. and receives water drained from the Perija range, Venezuelan

Andes, and Trujillo ranges (Talukdar and Marcano, 1994).

Deposition in the pre-Cambrian is represented by the igneous and metamorphic

rocks of the Perija and Iglesias series, which form the cores of the bordering mountain

ranges. These are followed by the largely metamorphosed Mucuchachi series of Upper

Cambrian to Upper Ordovician age (Sutton, 1946).

The sedimentation of the Cretaceous sequence in the Maracaibo Basin started up with

the deposition of coarse continental clastic sediments of the Rio Negro Formation which

consists of conglomerates and sandstones with minor shale intercalations. In the Lake

Maracaibo Basin the Rio Negro Formation is unconformably overlie the Jurassic to early

Cretaceous age of the La Quinta Formation (Figure 2.4).  In the Aptian-Albian, the

Cretaceous marine transgression led to the deposition of thick shallow water platform

carbonates and associated sediments which include, the Apon, Lisure and Maraca

Formations (or their equivalents) of the Cogollo Group. The formation consists of

deposits of hard, fosiliferous limestones, interbedded with shales (Bartok and Reijers,
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Figure 2.4 Generalized stratigraphic column for the Lake Maracaibo and surrounding

areas (Modified from Lugo and Mann, 1995).
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1977) (Delgado, 1993). During maximum marine transgression between the Cenomanian

and the Coniacian (Upper Cretaceous), the sedimentation was typically of pelagic and

euxinic facies, represented predominantly by organic-rich limestones (La Luna

Formation) main source rock in the basin (Bertagne et al., n.d.). During the Santonian to

Maestrichtian time, the sedimentation took place in an open marine (oxic) condition

represented by the thick shales of the Colon Formation which consists of almost entirely

of massive, hard shale (Sutton, 1946) and in addition, by the overlying more sandy Mito

Juan Formation in the western part of the basin (Talukdar et al., 1985). The Mito Juan is

composed principally of massive, black, gray, or greenish gray shales that are locally

sandy (Sutton, 1946).

The Late Cretaceous and Lower Paleocene orogeny caused uplifting and

subsequent erosion of the Paleocene formations, resulting in an unconformity identified

within the basin sediments (Delgado, 1993). Sedimentation changed from marine to

nonmarine in some areas during the Paleocene. In the southwest of the basin, non-marine

shale, sandstone, and coal of the Orocue Formation were deposited. In the western part

of the basin deposition took place in shallow-marine to near-shore deltaic conditions. In

the rest of the basin, sedimentation occurred on a shallow-water marine platform,

represented mostly by limestone and marl of the Guasare Formation. The formation

consists of thick sequence of fossiliferous, glauconitic limestones intercalated with thin

layers of shales and sandstones (Van Andel, 1958) (Sutton, 1946).

Because of the coastline of the Caribbean Sea during Eocene time was in the

vicinity of what is now the Lake Maracaibo (Bockmeulen et al., 1983), during early-
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middle Eocene time the great river built a stream flowed from southwest to northeast

(Figure 2.5). It built a series of deltas, but subsidence of the sea bottom was very rapid

and the successive deltas did not prograde seaward, but piled on top of each other

(Zamora, 1977). The combination of fluvial, fluvio-deltaic, and deltaic sedimentation

resulted in the thick, sandy/shaly Eocene sequence that covers the entire basin. The most

important oil reservoirs of the Maracaibo Basin accumulated during this period

(Delgado, 1993). Eocene sedimentation was mostly fluvial (Mirador Formation) in the

southwest, fluviodeltaic to deltaic (Mirador and Misoa Formations), which are contain

mostly sandstones, on the platform up to the hinge line (shelf break), deep water marine

shale (Pauji Formation) overlying the Misoa Formation in the northeast (Figure 2.6), and

turbidite and flysch deposits in the Barquisimeto trough beyond the northeastern limit of

the basin (Talukdar and Marcano, 1994).

In the Lake Maracaibo, at the end of the Upper Eocene, uplifting, folding,

faulting, and intense erosion took place, giving rise to an unconformity between the

Eocene and the overlying continental valley-fill sandstones of the Oligocene Icotea

Formation. This was followed by a transgressive period of sedimentation, beginning

with a regional basal conglomerate, the Santa Barbara Member of the La Rosa

Formation, in which were later accumulated huge quantities of hydrocarbons. Overlying

this unit is the lower-middle Miocene Lagunillas Formation, which consists of

sandstone, shale, and coal deposited in fluvial to deltaic environments. The Lagunillas

formation is subdivided into the lower Lagunillas, Laguna, and Bachaquero members,

which contain the three principal Miocene producing sands (Bockmeulen et al., 1983)
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Figure 2.5 Simplified Early to Middle Eocene paleogeographic map of the Maracaibo

Basin showing southwest to northeast transition from fluvial to deltaic to open-marine

relations (Modified from Maguregui and Tyler, 1991).
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(Talukdar and Marcano, 1994).

The subsidence of this foreland basin continued throughout Late Miocene-

Pliocene time during which the direction of maximum subsidence shifted from north to

south along the Venezuelan Andes foredeep. Thick siliciclastic continental sedimentary

rocks of the Late Miocene Betijoque Formation were deposited in this foredeep. In

general, since Late Miocene time, continental sedimentation has filled more and more of

the foredeep. Presently, the filling of Lake Maracaibo is the continuation of this

sedimentation process (Talukdar and Marcano, 1994).

2.2.2 Hydrocarbon Environment

Most of the oil in the Maracaibo Basin originated mainly from the marine

organic matter of the La Luna Formation and in minor amount from the marine organic

matter of the Capacho and Apon Formations (Talkudar et al., 1987).

Coarse continental clastics of the Rio Negro Formation is in places an excellent

reservoir rock, but mostly it is a poorly sorted mixture of clastics with moderate

reservoir capabilities (Stauffer and Croft, 1995). Conformably overlying the Rio Negro

clastics are the thick limestones of the Cogollo group. The Cogollo is an also good

reservoir where it has sufficient primary porosity and has also been fractured, as in Mara

and La Paz fields (Stauffer and Croft, 1995).

On top of the Cogollo group lies what is perhaps the world's most prolific oil

source rock; the La Luna formation. It consists of black, organic-rich limestones that are

characteristically thin bedded and fracture readily because of a high content of chert.
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Figure 2.6 Generalized stratigraphic column of central Lake Maracaibo and associated

main seismic markers. The Santa Barbara Member is the basal unit of the La Rosa

Formation. Lamar field, which is located in the central lake, shows same stratigraphic

characteristics with the stratigraphic column presented in this figure. Beside, the

Lagunillas Formation is subdivided into the lower Lagunillas, Ojeda, Laguna, and

Bachaquero members and the Misoa “C” sands are subdivided into several lower and

upper “C” members by some authors (e.g., Garcia, 1988; Holditch and Associates Inc.,

1997) which are not shown in this stratigraphic column (Modified from Delgado, 1993).
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The Colon Formation comprises a thick shaly sequence, which was deposited in

an open marine oxic condition during Santonian-Maestrichtian (Talukdar et al., 1985).

The Colon shale conformably overlies the La Luna formation and forms a regional seal

over the whole Maracaibo basin. It is this shale that seals most of the Cretaceous traps.

In the southwest part of the basin sand lobes in the upper part of the Colon are called the

Mito Juan Formation, which consists fine-grained sandstone, and are often good oil

reservoirs (Stauffer and Croft, 1995).

During the Paleocene, in the southwest of the basin, non-marine shale, sandstone,

and coal of the Orocue Formation were deposited. Among its three members, the

Catatumbo, Barco, and Los Cuervos Members, the lower Catatumbo and the upper

Barco contain coal that is a secondary source rock for oil. In the rest of the basin,

sedimentation represented mostly by limestone and marl of the Guasare Formation.

Siliciclastic sandstone of Paleocene age acts as secondary reservoir rock (Talukdar and

Marcano, 1994).

Eocene sedimentation was mostly fluvial (Mirador Formation) in the southwest,

fluviodeltaic to deltaic (Mirador and Misoa Formations) on the platform and deep water

marine shale (Pauji Formation) overlying the Misoa Formation in the northeast.

Sandstones in the Misoa and Mirador fomtations are primary and secondary reservoir

rocks, respectively (Talukdar and Marcano, 1994).

During Late Oligocene-Early Miocene time, the La Rosa Formation was

deposited first. Overlying this unit is the lower-middle Miocene Lagunillas Formation,

which contains Miocene producing sands (Bockmeulen et al., 1983). Sandstones of the
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Lagunillas and La Rosa are the primary and secondary reservoir rocks, respectively

(Talukdar and Marcano, 1994).

Several important north-south faults developed during the Miocene. The most

important in the Bolivar Coastal area are the Icotea-Lama horst and the Pueblo Viejo

fault and these faults created very important seal mechanisms trough the Lake

Maracaibo Basin (Bockmeulen et al., 1983).

In particular, producing units in the Lamar filed (Figure 2.7) discovered in 1958

consists of sandstones of the La Rosa, Icotea, and Misoa formations. Most of the oil in

the field trapped in faulted anticline and producing depth approximately ranged between

3000-5000 m. Cumulative oil production and estimated oil reserves from these

formations are 119,301,7 103 bbl and 464,445 103 bbl respectively (Talukdar and

Marcano, 1994).

In general, accumulations of oil and gas in the Maracaibo basin are related to two

petroleum systems. The main petroleum system, which contributes more than 98% of the

total oil reserves (produced plus proven) of 52.20 bbo, involves the genetic relationship

between the Upper Cretaceous La Luna source rock and the resulting petroleum

accumulations (Talukdar and Marcano, 1994).

The other petroleum system encompasses the upper Maastrichtian-Paleocene

Orocue Group source rocks and the resulting oil accumulations. This system is restricted

to the southwestern part of the Maracaibo basin and has contributed less than 2% (0.7

bbl) of the oil discovered (Talukdar and Marcano, 1994).
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Figure 2.7 Location of oil and gas fields in the Maracaibo Basin, within dashed outline.

Shown are ages of reservoir rocks, important faults. Numbers refer to name of the oil

fields  (for details see Talukdar and Marcano, 1994) (Modified from Talukdar and

Marcano, 1994).
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CHAPTER III

STRUCTURAL INTERPRETATION

3.1 Methodology

The structure and seismic stratigraphy of VLE 196 area in Block V were re-

interpreted using 3-D seismic data integrating with well logs. Both Kingdom Suite and

GeoGraphix softwares with NT workstations were used to interpret seismic data and to

construct maps, cross sections, and various 3-D graphic presentations. Because of the

study area has only one well log which has both sonic and density log, seismic

interpretation was done mainly on the seismic reflectors.

Interpretation procedure of the main structure can be summarized as follows: 1)

identification of main seismic reflectors, which are the Late Eocene unconformity (seal),

bottom of the Guasare Formation (secondary reservoir), and top of the La Luna

formation (main source rock), 2) identification of faults networks (VLE 400 and related

secondary faults).

To interpret depositional system of the area, GeoGraphix Prizm and GeoAtlas

applications were used. 3D seismic data were integrated with well logs and confirmed

tops of the C4 interval and the Guasare Formation picked on well logs smoothly

followed the seismic reflectors, which are time lines representing these picks. Gross-

thickness, net sand-thickness, log facies, and average porosity maps of the C4 interval
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and associated layers were prepared by correlating the tops through the seismic volume,

which allowed interpretation of structure between wells and in areas of no well control.

Seismic stratigraphic interpretation of the area was based on isochron, isopach,

and seismic amplitude maps due to target interval (Guasare-Misoa) has lack of well data.

Results gathered from seismic stratigraphic interpretation were also correlated with the

results obtained from well log interpretation for C4 interval because existing well logs

only penetrated to this interval.

3.2 Main Structure and Faults Network

3.2.1 Model: Strike-Slip Faulting, Restraining Bend

Strike-slip faults are characterized by a linear or curvilinear principal

displacement zone (PDZ) in map view (Figure 3.1). Typically, they consist of a

relatively narrow, sub-vertical PDZ at depth, and within the sedimentary cover, of

braided splays that diverge and rejoin both upwards and laterally. Arrays of upward-

diverging fault splays are known as “flower structures”, or less commonly “palm tree

structures”. Some strike-slip faults terminate at depth (or upward) against low-angle

detachments that may be located entirely within the sedimentary section or involve

basement rocks as well (Christe-Blick and Biddle, 1985).

A most distinctive features of many strike-slip faults are the occurrence of “en

echelon” faults and folds within and adjacent to the PDZ. The term en echelon refers to a

stepped arrangement of relatively short, consistently overlapping or underlapping
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structural elements that are approximately parallel to each other, but oblique to the linear

zone in which they occur. In strike-slip regimes, it can also be distinguished between en

echelon arrangements of structures along a given principal displacement zone. Releasing

oversteps and restraining bends are also other prominent features of strike-slip regimes.

The presence of both normal and reverse separation ceases to distinguish the two styles

(Christe-Blick and Biddle, 1985).

Releasing overstep (bend) is a zone in which the PDZ shifts laterally in an en

echelon pattern. A releasing overstep is caused by a change in overall direction of the

PDZ. The direction of the bend is such that fault blocks on opposite sides of the bend

tend to pull apart. A restraining bend is the opposite of a releasing bend. Opposite sides

of the fault tend to become a high-angle reverse fault separating a subsiding footwall

from a rising hangingwall. Flower structures are relatively small structures that develop

in zones where the upper part of PDZ fault splits due to local tension or compression.

Pop-ups and transpressional uplift are also an integral part of intraplate and

interplate strike-slip fault zones. Figure 3.2 shows the typical idealized pop-up structure

which is created by the zone of compression in restraining bends. They typically form

anticlinal uplifts, commonly with doubly plunging arrangements of folds, and are of

limited strike extent. In plan view they are broadly lozenge-shaped to rhomboidal in

form, whereas in cross section they commonly bounded convex-up faults that flatten

upward toward the surface forming positive flower or palm tree structure.

Bends and stepovers (jogs or offsets) in the PDZs of a strike-slip fault system

generally produce either zones of extension (pull-apart or stepover basins) at releasing
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Figure 3.1 Assemblage of structures associated with divergent wrench faults and

simplified strain ellipse for left-slip deformation (inset) (Modified from Harding et al.,

1985).

Figure 3.2 Synoptic diagram illustrating the 3-D geometry of an idealized pop-up

structure, which is created by zone of compression in restraining bends or restraining

sidesteps. T= baseplate movement toward viewer; A= baseplate movement away from

viewer (Modified from McClay and Bonora, 2001).
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bends or stepovers or regions of compression, uplifts, or pop-up structures (including

positive flower – palm tree structures) at restraining bends or restraining stepovers.  The

latter characteristically produce anticlinal uplifts in the overlying sedimentary section

with older strata or basement exposed in the core (McClay and Bonora, 2001).

3.2.2 Structural Interpretation of the Area

The seismic interpretation in the area is based primarily on the seismic reflectors.

Main structures of the area consist of three main horizons, which are the Late Eocene

Unconformity, the Guasare and Misoa Formations, and the La Luna Formation

respectively and complex faulting which is mainly created by the VLE 400 Fault (Figure

3.3 and Figure 3.4).

The unconformity is spread all over the field and easily recognizable. Average

depth of unconformity is about 2.75 s and it is characterized by a strong, very clear zero

crossing and continuous reflection. The structural map of the Late Eocene unconformity

is shown in Figure 3.3. It is clear in this picture that the deformation increases in the

northeast direction, particularly along the VLE 400 Fault. This erosional structure in the

area is possibly related to the renewed transpression of the Maracaibo Basin during

Middle Miocene or tectonic uplift during the Late Eocene to the Early Oligocene (Lugo

Lobo, 1991). The unconformity acted as a seal in the area and inhibited the migration of

the hydrocarbons. It is relatively flat structure and all structures below toplap the

overlying unconformity.
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Figure 3.3 Time structure map of the Late Eocene unconformity. As it can be seen in the

figure, deformation related with unconformity increases to the northeast especially along

the VLE 400 Fault. Contour interval is 10 ms (two way travel time).
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Figure 3.4 3D perspective visualization of the main structure in the area. The VLE 400

fault separates the area in two main parts and creates upwelling in the overlying

unconformity and shifted the Guasare and La Luna Formations. (Note that the figure

horizontally exaggerated and normal and reverse faults on the east and west side of the

area were not shown.)

TWTT (s)
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Figure 3.5 (a) shows positive flower structure, which is created by strike-slip

faulting, in the middle of the area and Figure 3.5 (b) shows shaded relief – time-structure

map of the unconformity. As it can be seen in these figures, intensive faulting did not

affect the overlying unconformity but strike-slip faulting created uplifting in the west

side of the area.

Second main seismic reflector in the area is the Guasare Formation, which is

secondary reservoir, located middle of the study area and overlain by the Misoa

Formation. The Guasare Formation affected by faulting especially in the vicinity of the

VLE 400 Fault. Figure 3.6 (a) shows normal and reverse faulting in the area and Figure

3.6 (b) shows the shaded relief – time structure map of the Guasare Formation. In these

figures, orientation of the normal and reverse faults is approximately 500 to the VLE 400

Fault and the dipping direction of the faults can easily be seen.

Third main seismic reflector is the La Luna Formation, which is the main source

rock in the Lake Maracaibo basin, was interpreted based on its strong seismic reflectors.

The average depth of source rock is around 0.2 s. Source rock was characterized by four

seismic reflector packages. These reflectors are recognizable in the eastern part of the

area but in the western part, they are quite difficult to pick because of the complex

structure especially in the vicinity of the VLE 400 Fault. As seen in the Figure 3.6, both

the Guasare and La Luna Formations were affected by the VLE 400 Fault.

The main deformation process in the area is strike-slip movement created by the

VLE 400 Fault. It creates a significant vertical displacement of the Guasare and La Luna

Formations (Figure 3.7). Vertical separation is approximately 75 m (150 ms two-way
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Figure 3.5 (a) Seismic in-line 655 showing main faults and formations in the study area. Three main reflectors are the unconformity, Guasare and La Luna formations respectively.  The unconformity

has strong reflector, mainly sub-horizontal; bottom of Guasare Formation (secondary reservoir) has strong reflector, clear zero-crossing. The La Luna source rock is composed of four seismic

reflectors, which are easily identified. Note that the strike-slip faulting created positive flower structure in the west side of the area. (b) Shaded relief, time-structure map of the Late Eocene

unconformity on the seismic basemap. Note that the uplifting created by the VLE 400 strike-slip reverse fault very clear in the west side of the base map. Horizontal red line on the basemap shows the

location of in-line 655.
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travel time) and 150 m (250 ms two-way travel time) for the Guasare and La Luna

formations respectively.

The VLE 400 Fault is interpreted as a left lateral strike-slip reverse fault (term

adapted from Hill, 1958). Because the VLE 400 Fault behaves as a strike-slip in strike

sections and acts as a reverse faults in dip sections and  I believe that dual classification,

which is consider both strike and dip separation,  is the most appropriate definition for

this fault. Comparison of Figure 3.5 (a) and Figure 3.6 (a) show this behavior clearly.

Vertical displacement along the VLE 400 Fault is about 100 m is down to the west. As it

can be seen in Figure 3.8, the trend of the principal displacement zone is north south and

dips westward and it is situated right in the middle of the field and as it stated above it

appears in cross sections as a reverse fault with the upthrown block on the east side of

the principal displacement zone. The VLE 400 Fault was also interpreted as a splay of

the Icotea Fault (Figure 2.3) which is the major north fault that traverses trending that

the center of the Maracaibo Basin. Associated secondary faults have same trend with the

VLE 400 Fault and they created a positive flower structure in the central area and

created uplift on the overlying unconformity. General interpretation and the 3D

perspective visualization of the structure (Figure 3.9) and comparison of the model

(Figure 3.2) show that the area was subjected northeast southwest compression and the

VLE 196 area situated in the restraining bend area.

The VLE 400 Fault separates the VLE 196 area into two main parts.  The eastern

part of the area has been producing oil for years whereas the western part has not. The

eastern part is gently dipping on the east direction. It is affected by some normal faults
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Figure 3.8 Fault polygon map of the Guasare Formation showing the general structure.

The main fault, VLE 400, can easily be identified by its north-south trend as well as its

associated faults. Eastern part of the area appears to be affected by faults more than

western part. Trend of normal and reverse faults is northwest southeast. The contour

interval is 40 ms (two-way travel time).

cross-line

 complementary
         faults

N

VLE-400 Fault

 en-echelon normal&
      reverse faults

in
-li

ne

     0                  1000

meters



39

that have important lateral extension. The western part is affected by reverse faults in the

southern area and normal faults in the northern area. This structure is dipping very

steeply on the north direction.

Strike-slip faulting and tectonic activity created numerous faults on the both

parts. These northwest southeast trending secondary faults are oriented approximately

500 to the VLE 400 Fault. Secondary faults also interpreted as a second order wrench

faults (Holditch and Associates Inc., 1997) because (1) there are kinks or local offsetts of

the VLE 400 Fault near the ends of secondary faults, (2) the displacement diminish

across the secondary faults with proximity to the VLE 400 Fault, (3) most of the

secondary faults terminate at the Eocene unconformity. Most of these faults located in

the eastern part of the area. These are mainly northwest southeast oriented en echelon

normal and reverse faults (Figure 3.10) and they compartment the reservoir. Both

reverse and normal faults have same orientation and they mostly created vertical

displacements in the Guasare-Misoa interval but some of them also penetrated through

the La Luna Formation.

One of the most important problems arises in the structural interpretation part,

which is if the area situated in the restraining bend or releasing bend within the strike

slip movement. As it can be seen in Figure 3.1, restraining bends characterized by

reverse faults and en echelon normal faults form parallel to the direction of the principal

stress. Comparison of Figure 3.6 (b) and Figure 3.1 suggest that the area situated in the

restraining bend area because orientation of normal faults show left lateral movement

and southwest northeast compression other than extension. On the other hand, fault trace
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Figure 3.9 3D perspective visualization (top view) of the VLE 400 and associated

complementary faults and time slice 3.100 s. Note that the orientation of en echelon

normal and reverse faults in time slice, which are not shown in this figure, are southeast

northwest.

amplitude
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Figure 3.10 3D perspective visualization of faults and horizons perpendicular of the

strike of the en echelon normal faults which are created migration pathways cutting

overlying sediments of the La Luna source rock.
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of the PDZ (VLE 400 Fault) in Figure 3.6 (b) and Figure 3.7 (b) indicate extension

which shows that the area situated in the releasing bend (see Appendix E, figure part B).

The most possible explanation for this contradiction can be that the area was situated in

the releasing bend but afterward, it was subjected to inversion tectonics (see discussion

for details) and the VLE 400 Fault gained its reverse component and the VLE 196 area

showed restraining bend characteristics.

3.2.3 Hydrocarbon Trapping

The major trapping mechanisms in the VLE 196 Field are the four-way closure

of the anticline and offset of strata by the VLE 400 Fault (Figure 3.11). The anticline

trends northward across most of the field, but the axis turns northeastward on the north,

as the fold enters Block VI. Strata on the east flank of the anticline dip approximately

200 eastward (Holditch and Associates Inc., 1997). The VLE 400 Fault is a sealing fault

that prevents migration of hydrocarbons from the eastern to western block. Because

overlying Late Eocene unconformity was not affected by the faults, it acts as a seal and

inhibits further migration of hydrocarbons.

The most distinctive feature in the study area is the existence of the source and

reservoir rocks together. Because en echelon normal and reverse faults penetrated

through source rock, they created excellent migration pathways to reservoir sandstones

of the Misoa Formation through overlying shaly layers of Colon and Mito Juan

formations. The main producing area is situated in the positive flower structure, which is

located in the middle of the VLE 196 area.



43

Figure 3.11 3D perspective wireframe visualization of the four-way trapping mechanism

in the VLE 196 area. The unconformity on the top, the VLE 400 Fault and

complementary faults on the sides and the anticline on the bottom.
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3.2.4 Results

1) The VLE 196 area, Block V, Lamar Field, represents a complex structure because of

its previous long tectonic activity.

2) The main deformation process in the area is the strike-slip movement created by the

VLE 400 Fault, a left-lateral strike-slip reverse fault, separated the area in two main

parts.

3) The trend of PDZ (principal displacement zone) is north south and dips westward.

4) Associated complementary faults have same trend with the VLE 400 Fault whereas

en echelon normal and reverse faults are oriented approximately 50 degrees to the

VLE 400 Fault and they compartment the reservoir.

5) General structural interpretation shows that the area was subjected northeast

southwest compression and the VLE 196 area situated in the restraining bend.

6) Three main reflectors in the study area are the Late Eocene unconformity, Guasare

Formation, and La Luna Formation. The unconformity is spread all over the field and

because of it was not affected by faulting, it acted as a seal and inhibitied the

migration of the hydrocarbons. The Guasare and La Luna formations were affected

by faulting especially in the vicinity of the VLE 400 Fault. The VLE 400 Fault

created a significant vertical displacement of the Guasare and La Luna formations.

Vertical seperation is approximately 75 m (150 ms two-way travel time) and 150 m

(250 ms two-way travel time) for Guasare and La Luna formations respectively.

7) The major trapping mechanism in the VLE 196 area is the four-way closure of the

anticline and offset of strata created by the VLE 400 Fault.
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CHAPTER IV

DEPOSITIONAL SYSTEM and SEISMIC STRATIGRAPHIC INTERPRETATION
DEPOSITIONAL SYSTEM and SEISMIC STRATIGRAPHY

4.1 Depositional System

4.1.1 Model: Tide-Dominated Delta

Deltaic depositional facies result from interacting dynamics processes (wave

energy, tidal regime, currents, climate, etc.), which modify and disperse fluvial clastic

deposits. Depositional features include distributary channels, river-mouth bars,

interdistributary bays, tidal flats, tidal ridges, beaches, eolian dunes, swamps, marshes,

and evaporite flats. A significant deltaic accumulation necessarily requires the existence

of a river system carrying substantial quantities of clastic sediment from an inland

drainage basin to the coast, where the deposits from the delta plain (Coleman and Prior,

1982).

Delta environments and facies can be conveniently grouped into delta plain, delta

front, and bounding delta destructional and flank assemblages. Delta geometry and

distribution of framework sand facies are determined by three basic processes: (1)

sediment input, (2) wave energy, and (3) tidal energy flux. This process of framework

provides the basis for recognition of a tripartite classification of end member delta types,

which are fluvial-, wave-, and tide-dominated deltas.

Framework sand bodies of tide-dominated deltas (Figure 4.1) are the products of

deposition in tidally modified estuarine distributary channels, delta-fringing tidal sand
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flats, and tidal current ridges and shoals. The distributary fill and tidal sand ridge facies

merge as distributary mouths flare and open onto the broad subtidal platform that fronts

most tide-dominated deltas. Tide-dominated deltas display few to many estuarine

distributary channels, which are characterized by broad, funnel-shaped mouths, and

narrow, sinuous upper reaches (Galloway and Hobday, 1996). Distributary mouth bars

and channel deposits also comprise the best reservoir quality bodies within a delta

system. The general upward-coarsening character of distributary mouth bars tends to

produce sandstone bodies are usually upward-fining and have their greatest permeability

at the base (Scheihing and Atkinson, 1992).

The channel fill deposit is composed of multiple, superimposed, and variably

preserved upward-fining depositional units. Estuarine distributary channels are flanked

by diverse facies of the lower and upper delta plain. Landward, channel fill boundaries

are abrupt and erosional, but in distal portions of the distributary, where surrounding

flats and splays are flooded during high tide, channel-fill deposits grade in part into

surrounding finer-grained sediments.

Recognition of delta types can be differentiated primarily by the geometry and

orientation of the progradational sand facies, their spatial relationships to the distributary

channel system and, to a lesser extent, the geometry of the distributary channel fills

(Galloway and Hobday, 1996).
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Figure 4.1 Conceptual model of the tide-dominated delta. Vertical sections show

estuarine channel fill and tidal sand ridge on prodelta platform of tide-dominated delta

(Modified from Einsele, 1992).
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4.1.2 Interpretation of the Depositional System

In this part of the study to interpret depositional system of the VLE 196 area,

Block V, 3D seismic data integrated with well logs and confirmed that tops of the C-4

interval and the Guasare Formation picked on well logs smoothly followed the seismic

reflectors, which are time lines representing these picks. Gross-thickness, net sand-

thickness, log facies, isopach, net to gross ratio, and average porosity maps of the C-4

interval and associated layers were prepared by correlating the tops through the seismic

volume, which allowed interpretation of structure between wells and in areas of no well

control. In the study area, most wells were drilled in the western portion leaving the

eastern portion with no well control. Most of the wells fully penetrated the C-4 interval

but partially penetrated the other “C” intervals. Log information for the C-4 interval was

much more complete and representative then those of the other intervals. Therefore,

interpretation of depositional system of the area was done based on C-4 interval with the

area in well log control.

Three cross sections were used to divide the C-4 interval into three sandstone and

three shaly layers. For each sandy layer, gross interval thickness, net average porosity,

and log facies maps were prepared for the area which includes well logs (see Figure 1.2

for the well log data extend). Net-to-gross ratio maps were prepared dividing net

thickness to gross thickness. Average porosity maps were done based on density logs

using following equation:

flma

bma
D

��

��
�

�

�

�            �ma= matrix density, �b= bulk density, and �fl= density of the fluid
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The average porosity and net sand thickness map were done using cut-off 5% effective

porosity and 45% shale volume.

Figure 4.2 shows one of the type logs (VLE 1063) in the study area. In this type

log C-4 interval was separated into three sandy and three shaly layers. Sandy layers of

C-4 interval show upward-coarsening, blocky and, upward fining log patterns on the

gamma ray trace. Log patterns and their order of occurrence suggest that the sandstone

are delta front and stacked fluvial/distributary channel facies of delta system. This

conclusion supported by the stratigraphic cross sections and associated lithofacies maps.

Layer 1 is predominantly sand, the top of the interval exhibits a shaly zone with

thin sandy interbeds (especially on gamma ray logs). Well log response of this layer is

fining-upward, blocky which is interpreted as a delta front. Gross thickness map (Figure

4.3 a) of this interval shows that sediments deposited along the southeast northwest and

thickest sediment body (approximately 250 ft) located in the middle of the area. Average

porosity and log facies maps of Layer 1 also indicated SW-NE trend of sedimentation.

Most porous part is situated in the north and has 27% average porosity (Figure 4.3 b) and

blocky log pattern. Comparison of gross thickness, average porosity and log facies map

(Figure 4.3 c) show thickest sediment part with 27% porosity has blocky log pattern and

fining-upward sequences surrounded by blocky part. Based on these informations, Layer

1 was interpreted as delta front.

Layer 3 consists of massive sand within thin, shaly interbeds (Figure 4.2). Gross

thickness and average porosity maps (Figure 4.4 a and b) of this layer suggested that the

sediment source was SW to NE. Maximum gross thickness of this interval is 100 ft and
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Figure 4.2 Type log (VLE 1063) showing log patterns, reservoir layers, and sedimentary

facies. Note that left curve is gamma ray and right curves are laterolog deep resistivity

and shale volume respectively. See Figure 1.2 for location.
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average porosity is 30%. Log facies map (Figure 4.3 c) shows that the most porous parts

have blocky, serrate, and coarsening-upward log signatures.

Layer 5 is mostly sandy with shaly interbeds. Gross thickness (Figure 4.5 a) of

this layer is approximately 150 ft and elongated to SE NW direction and become thinner

through to southeast. Average porosity and log facies maps (Figure 4.5 b and c) of this

layer show that maximum porosity (30%) located in the middle of the area and has

upward-fining facies pattern which is indicator of distributary channel.

Shaly layers of C-4 interval interpreted as potential seals and they were deposited

in low-energy interdistributary, and shallow marine environments. The percentage of

shale increases upward from C5 to C-4. Shales are of variable thickness and extend and

they make up almost 40% of the C-4 interval. These layers are believed to be potential

seals. Shales are of variable thickness and some shaly layers pinch out between C-4

layers. In addition, sandy facies commonly occur within the shales. Layer 6 at the base

of the C-4 interval is the most extensive shaly layer in the section, and most likely it

represent a marine flooding surface which is identified in electric logs as low resistivity

and high gamma peak. In contrast, many other shaly layers have more sand content.

Thus, the extend of shale layers as reservoir or no-flow units vary from layer to layer.

To interpret all layers together, similar maps were also prepared for C-4 strata.

Figure 4.6 (a) and (b) show isopach and net sand thickness of C-4 interval. The net sand

thickness map exhibits southeast northwest contour patterns, reflecting depositional

control on the interval. The maximum sand is 250 ft thick and become thinner in the

southeast      direction.WWWWWWWWWWWWWWWWWWWWWWWWWWWW
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Figure 4.3 Layer 1 lithofacies maps (see Figure 1.2 for log data extend). (a) Gross thickness map of Layer 1 shows that sediments deposited along the southeast northwest and thickest sediment body (approximately

250 ft) located in the middle of the area. Contour interval is 15 ft. (b) Average porosity map of Layer 1 also indicates that depositional axis is trending southeast northwest. Most porous sand body located in the north

of the area with 27% average porosity. Note that the thickest sand bodies have higher porosities than those of the thinner. Contour interval is 0.75%. (c) Log facies map of Layer 1 shows that dominant log responses

are fining-upward and blocky. SE NW trending two lobes with their blocky and coarsening-upward log responses interpreted as a delta front. (   : well data control, log patterns:      : fining-upward,     : coarsening-

upward,      : blocky)
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Figure 4.4 Layer 3 lithofacies maps (see Figure 1.2 for log data extend). (a) Gross thickness map of Layer 3 shows that sediments deposited along the southeast northwest and thickest sediment body (approximately 90

ft) located in the northern part of the area. Contour interval is 8 ft. Massive sands were interbedded with shaly units. (b) Average porosity map of the Layer 3 also shows southwest northeast trending of sediments.

Most porous sand bodies concentrated in three areas, which have 25%, 20% and 23% average porosity values respectively. Contour interval is 0.75%. (c) Log facies map of the Layer 3 shows that the SW NE trending

sand bodies have serrate and coarsening upward log responses. These sand bodies interpreted as interdistributary channels. Interdistributary channels flanked by fining-upward log sequences. (   : well data control, log

patterns:      : fining-upward,     : coarsening-upward,       : serrate,      : blocky)
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Figure 4.5 Layer 5 lithofacies maps maps (see Figure 1.2 for log data extend). (a) Gross thickness map of the Layer 5 shows the same trend (southwest northeast) of sediment source.  Layer 5 is mostly sandy on the

north but with shaly interbeds in the southeast. Maximum gross thickness is about 130 ft. Contour interval is 10 ft. (b) Average porosity map of the Layer 5. Maximum average porosity is 24% located in the middle of

the area. Contour interval is 1%. (c) Log facies map of the Layer 5 shows that the most porous part coincides with fining-upward log responses, which are indicator of typical channel system. Between fining-upward

log sequences, serrate log patterns cover whole area. (    : well data control, log patterns:      : fining-upward,       : coarsening-upward,      : serrate)
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Figure 4.6 (a) shows the net sand thickness map of the C-4 interval. In this map,

thickest sands located in the north part of the area and they also show SE NW trend. As

it can be seen in Figure 4.6 (b), sandstone geometry parallel to each other and separated

by two shaly units. Thickness of sand packages is 200 ft, 100 ft, and 120 ft and average

porosities are 25%, 22%, and 23% respectively (Figure 4.7 a). Comparison of average

porosity and log facies maps (Figure 4.7 b) show that the sandy parts in the C-4 interval

have fining-upward log pattern. When porosity, net sand thickness, and log facies maps

interpreted together, it shows that depositional axes of these southwest northeast

trending sandy packages coincide with fining-upward log responses and they can be

interpreted as distributary channels. Serrate log patterns flanked fining-upward log

responses and they can be interpreted as interdistributary channels with their high shale

content. They usually deposited during over flooding times.

In general, depositional axes in the C-4 interval defined by trends of more than

200-250 ft of gross sandstone, occur in narrow, northeast-trending dip-parallel belts,

seperated by relatively sandstone-poor area containing less than 75 ft of gross sandstone.

C-4 depositional axes coincide with blocky and upward-fining log responses, flanked by

sandstone-poor deposits exhibiting upward-coarsening and serrate log response. These

blocky and upward-fining sandstones are interpreted to have been deposited several

sandstone-rich tidal channels or upward-coarsening tidal-bar and tidal-shelf deposits.

In the VLE 196 filed, C-4 stratum is sand rich and is composed of around 70%

sandstone. These sediments were deposited by a delta system that prograded eastward to

northeast through the area. Reservoir quality is mostly controlled by sandstone facies.
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Figure 4.6 (a) Net sand thickness map of the C-4 interval. Figure exhibits southeast northwest contour patterns, reflecting

depositional control in the interval. Thickest sands located in the northern part and 200 ft value. Contour interval is 5 ft. (b)

Isopach map of the C-4 interval. This figure also shows same trend with net sand thickness map. Note than the shaly units

interbeded the depositional dip trending sandy units. Contour interval is 5ft. (    : well data control)
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Figure 4.7 (a) Average   porosity   map   of  the  C-4  interval.  Figure  shows   three   most  porous  bodies  are  trending

through depositional  dip. (b)  Log  facies  map of the C-4 interval. In  this  figure  southwest northeast trending sand packages

coincide with  fining-upward  log  responses  which  are  interpreted  as distributary channels. (    : well data control,  log

patterns:        :   fining-upward,         :coarsening-upward,        : serrate,         : blocky)
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The oil-bearing facies in the VLE 196 area are mainly channel-fill sandstones

that have upward-fining and block patterns and delta-front sandstones that have upward-

coarsening and blocky patterns. These sandstones are more continuous in the east-west

then the north-south directions.

The log patterns and their order of occurrence in C-4 strata suggest that the

sandstone are delta front and stacked fluvial/distributary channel facies of a delta system.

This conclusion supported by the sand-body geometry shown on net sandstone maps. On

these maps, sand bodies trend eastward and northeastward, and they have distributary

patterns. The most persistent input of sediments was in the northwest of the area,

between wells VLE 1063 and VLE 1139.

I used processed well logs to construct two stratigraphic cross sections along the

depositional strike (northwest-southeast) and one stratigraphic cross section along the

depositional dip (northeast-southwest). Figure 4.8, 4.9, and 4.10 show representative

cross sections (see Figure 1.2 for locations). Stratigraphic cross-sections are drawn using

electric log correlation techniques to recognize identical sand/shale bodies between

wells. The gamma and resistivity curves are used to identify the major sandstone and

shale sections.

Using the cross sections made with normalized well logs, Misoa C-4 interval was

divided into six layers. Odd-numbered layers are potential reservoir sandstones, whereas

even-numbered layers are shaly and are potential seals. Cross-section A-A' (Figure 4.8)

is along the depositional dip. In this figure, reservoir facies of C-4 interval consist of

stacky, massive sand bodies from gamma ray log. Sandy layers have generally blocky,
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serrate, and fining-upward log responses. The gamma ray log especially serrated in well

#400 and #1130 as compared to other wells in the cross section showing increasing

shaliness in the southeast direction. The shaliness is most probably caused by pinching

out of sandy layers 3 and 5. Stratigraphic cross-section B-B' (Figure 4.9) is along the

depositional strike (nortwest-southeast) and all wells in this section are producer. In this

cross-section, sand body thickness of Layer 1 increases through well #1140 and then

decreases. Its fining-upward – serrate log response shows possible distributary channel.

Sand body thickness is same for Layer 3 and 5 but shaly content of Layer 2, 4, and 6

varies through the cross-section and it is believed that they do not sufficient enough to

create seals in the area. Cross-section C-C' is also along the depositional strike and

parallel to cross-section B-B' (see Figure 1.2 for locations). This cross-section shows

similar characteristics with cross-section B-B'. Sandy layers of C-4 have dominantly

fining-upward, blocky, and serrate log responses. Layer 1 in well #571 also shows

increase in sand body with its fining upward log pattern shows the existence of

distributary channel. Interpretation of cross sections B-B' and C-C' together shows that

the channel system in well #571 is same as the channel observed in well #1140 in cross-

section B-B' (note that the well #1140 and well #571 are approximately in the same

direction, see for Figure 1.2). Shaly layers of cross- section C-C' are also varies in

thickness and distribution through the area and thickness decreases from C-5 to C-4.

Interpretation of cross sections reveals that the study area consists several distributary
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Figure 4.8 Stratigraphic cross-section A-A' along the depositional dip (northeast-southwest) (see Figure 1.2 for location). The

gamma ray and resistivity curves were used to identify the major sandstone and shale sections. Misoa C-4 interval divided into

three sandy and three shaly layers. In this cross-section, reservoir facies of C-4 strata consist of stacky, massive sand bodies.

Sandy layers have generally blocky, serrate, and fining-upward log responses. Shaliness of layers increase in the southeast

direction, especially in wells #400, and #1130. The shaliness is most probably caused by pinching out of sandy layers 3 and 5.
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Figure 4.9 Stratigraphic cross-section B-B' along the depositional strike (northwest-southeast) (see Figure 1.2 for location).

Layer 1 in the well #1140 shows increases in sand content with fining-upward – serrate log response interpreted as a

distributary channel.
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Figure 4.10 Stratigraphic cross-section C-C' along the depositional strike (northwest-southeast) (see Figure 1.2 for location).

Sandy layers of C-4 interval have dominantly fining-upward, blocky, and serrate log responses. Layer 1 in well #571 also

shows existence of distributary channel with its fining-upward log pattern and increasing sand thickness.
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and inter-distributary channels (ranging from 30 to 50 ft) along the depositional dip

(northeast-southwest). Channel fill sands are heterogeneous and cut by several thin shale

beds. Comparison of net sand maps and cross sections also suggest that reservoir

sandstones are more continuous in the east-west direction.

Previous studies indicate that the Lower Misoa strata deposited in a tide-

dominated delta setting and sediment source was from the west or southwest (Talukdar

and Marcano, 1994). Results of this study also suggest that the that sediments in the

VLE 196 area were deposited by a tide dominated delta plain to shallow marine

sediments consisting of fluvial/distributary channel and delta front sandstones prograded

eastward through the filed. This interpretation is based on (1) log patterns of framework

sandstones which are upward coarsening, block, and upward fining an the gamma ray

trace; (2) sand body geometry and characteristics are shown on net sandstone, average

porosity, gross thickness and log facies maps suggesting stacked fluvial channel-fill

sandstones in the VLE 196 area and distributary sand bodies southeast of the field.
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4.1.3 Results

1) C-4 interval in the Misoa sandstones were divided into three sandy and three shaly

units based on type log responses and cross-sections. In each layer, sand thickness

varies but they trend through paleo dip (southwest-northeast).

2) Layer 1 is predominantly sand and interbedded with thin shaly units. Maximum

gross thickness of this layer 250 ft and average porosity 27%. Fining-upward and

blocky log responses of Layer 1 indicate delta front environment.

3) Later 3 consists of massive sand within shaly interbeds. Maximum gross thickness an

average porosity of this layer are 100 ft and 30% respectively. Log facies map of

Layer 3 has blocky, serrate, and coarsening-upward log characteristics.

4) Layer 5 is mostly sandy with shaly interbeds. Gross thickness of this layer is

approximately 150 ft and elongated to southwest northeast direction and become

thinner through to southeast. Average porosity of this layer is 30%. Layer 5 has

upward-fining log response, which is indicator of distributary channel.

5) Shay layers of C-4 strata interpreted as potential seals and they deposited in low-

energy interdistributary, and shallow marine environments. The percentage of shale

increases upward from C-5 to C-4. Shales are of variable thickness and extend and

they make up almost 40% of the C-4 interval.

6) Layer 6 at the base of the C-4 interval is most extensive shaly layer in the section and

most likely it represents a marine flooding surface which is identified in electric logs

as low resistivity and high gamma peak. In contrast, many other shaly layers have



65

more sand content. Thus, the extend of shale layers as reservoir or no-flow units are

vary from layer to layer.

7) In general, all C-4 layers exhibit southeast northwest sand thickness contour patterns

in lithofacies maps, reflecting depositional control on the interval. Depositional axis

in the C-4 interval defined by more than 250 ft of gross sandstone, occur in narrow,

depositional dip parallel belts, separated by relatively sandstone-poor are consisting

less than 20 ft of gross sandstone. C-4 depositional axes coincide with blocky and

upward-fining log responses, flanked by sandstone-poor deposits exhibiting upward-

coarsening and serrate log responses.

8) The log patterns and their order of occurrence in C-4 strata suggest that the

sandstone are delta front and fluvial/distributary channel facies of delta system. This

conclusion supported by the sand-body geometry shown on net sandstone and gross

thickness maps.
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4.2 Seismic Stratigraphy

4.2.1 Principles

Seismic stratigraphy is the interpretation of stratigraphy and depositional facies

from seismic data. Seismic reflection terminations and configurations are interpreted as

stratification patterns, and are used for recognition and correlation of depositional

sequences, interpretation of depositional environment, and estimation of lithofacies.

Seismic sequence analysis subdivides the seismic section into packages of

concordant reflections, which are separated by surfaces of discontinuity defined by

systematic reflection terminations. These packages of concordant reflection (seismic

sequences) are interpreted as depositional sequences consisting of genetically reletaed

strata and bounded at their top and base by unconformities or their correlative

conformities. Reflection terminations interpreted as stratal terminations include erosional

truncation, toplap, onlap, and downlap (Figure 4.11 a) (Mitchum et al., 1977).

After seismic sequences are defined, environment and lithofacies within the

sequences are interpreted from seismic and geologic data. Seismic facies analysis is the

description and geologic interpretation of seismic reflection parameters, including

configuration, continuity, amplitude, frequency, and interval velocity. Each parameter

provides considerable information on the geology of the subsurface. After seismic facies

units are recognized, their limits defined and areal associations are mapped, they are

interpreted to express certain stratification, lithologic, and depositional features of the

deposits that generated the reflections within the units. Major units of reflection
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Figure 4.11 (a) Seismic stratigraphic reflection terminations within idealized seismic

sequence. (b) Various seismic reflection configurations and modifications. (c) Seismic

reflection patterns interpreted as prograding clinoforms (Mitchum et al., 1977).

(b)

(a)

(c)
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configurations include parallel, subparallel, divergent, prograding, chaotic, and

reflection-free patterns (Figure 4.11 b). Prograding configurations may be subdivided

into sigmoid, oblique, complex sigmoid-oblique, shingled, and hummocky clinoform

configurations (Figure 4.11 c) (Mitchum et al., 1977).

In delta depositional environments, each kind of delta has a distinct framework

orientation and depositional pattern, which results in a characteristic seismic reflection

pattern. Fluvial-dominated deltas are characterized by clinoform seismic reflection

patterns which include; oblique (tangential), complex oblique (tangential), sigmoid, and

complex sigmoid-oblique. Wave dominated-deltas are characterized by shingled seismic

reflection patterns. Tide-dominated deltas are difficult to recognize in the subsurface and

through seismic stratigraphic methods, but the clinoform seismic reflection patterns,

which commonly appear on seismic data and they usually associated with delta systems

(Mitchum et al., 1977) can be used to characterize tide-dominated deltas (Berg, 1982).

4.2.2 Seismic Stratigraphic Interpretation

In this part of the study, isochron, isopach, and seismic amplitude maps were

used to interpret seismic stratigraphy of the study area. Because existing well logs only

penetrated to C4 interval, associated maps were drawn only for top of the C4 and C5

layers. Beside conventional seismic amplitude maps, instantaneous phase display

sections also used. Instantaneous phase is basically a measure of reflector continuity.

Because it is independent of the magnitude of peak or through amplitudes, the

magnitude of instantaneous phase is always same (00 for peak amplitude, +180 for
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troughs).  Therefore, instantaneous phase tend to balance the weak and strong reflectors

and make the interpretation of weak coherent reflectors easier and is very effective for

detecting the fault discontinuity, wedge-out, channels, fan and internal deposition

geometry of the sedimentary layers and sequence boundaries. C4 interval isopach

thickness were also correlated with thickness from well data to ensure seismic and well

data coherence. Because well curves could not be tied to seismic data, time-depth

relations from velocity survey (well #1101) was used to pick top of the C4 and C5 layers

from seismic data and to create related iso-maps.

Because the scale of the depositional structures within the C4 layers is generally

below seismic resolution, I was unable to interpret seismic stratigraphy of the C4 layers

and correlate them with well data. To determine vertical resolution of the seismic data,

dominant frequencies were calculated for the C-4 strata and Misoa Formation. As it can

be seen in Appendix C, dominant frequency is approximately 20 Hz and average

velocity of the Misoa sands was determined from velocity survey from well #1101 as

8600 ft/sec. Using velocity and dominant frequency, dominant wavelet ( f/�� � ) was

calculated as 430 ft. Average thickness of C4 layers change between values of 20 ft and

90 ft (Appendix B) but the vertical resolution of seismic data allows recognizing

intervals more than or equal to 107 ft (�/4).

Figure 4.12 shows isochron map of the C4 interval. As it can be seen in this

figure, it is very difficult to interpret the area covers well logs but the general trend of

the interval exhibits time thickening of contour patterns, which are indication of possible

sand ridges, between arrows in southwest-northeast direction. The interval thickness
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Figure 4.12 Isochron map of the C4 interval. Arrows indicate time thinning of the

interval. As it can be seen in the figure, thickest parts located between the arrows and

trend southwest-northeast direction. Dotted rectangular indicates well data extend.

Contour interval is 10 ms.
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maximum 250 ms TWTT. Isopach map of the C4 interval (Figure 4.13) also exhibits

southwest-northeast trending contour patterns and some isolated lobes between en

echelon faults in the east side of the area. The interval thickness of the C4 isopach map

ranges from a minimum 300 ft to a maximum 700 ft. It is obvious that the C4 interval

thickest (approximately 600 ft) in the west side (downthrown block) of the VLE 400

Fault and become thinner in the east side (approximately 250 ft). This is caused mainly

by the reverse component of the VLE 400 Fault which made the “C” layers thinner in

the east side (upthrown block) and the erosion created by Late Eocene unconformity.

The isopach patterns also indicate that the sediments entered the study area from the

southwest direction and they create some distributary channel fill structures between

tidal sand ridges (see Figure 4.13).

Figure 4.14 shows enlarged image of the dotted line area which represents well

log data extend in Figure 4.13. Contour patterns indicate that the thinning of the C4

interval in the middle of the area because of uplifting created by the VLE 400 Fault.

Most of the “C” layers eroded in the vicinity of the VLE 400 Fault and they created

toplap reflection patterns through the unconformity. Thickness values obtained from

each well in this figure were used to correlate thickness form well data. Values on each

well in isopach map of the C4 interval were plotted versus C4 thickness values from well

data to correlate seismic and well log data. As it can be seen in Figure 4.15, thickness

from well and seismic data show good correlation. Note that the in this figure, thickness

below vertical seismic resolution and thickness have extremely high values were not

considered (see Appendix D for details).
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Figure 4.13 Isopach (true vertical thickness) map of the C4 interval. Contour patterns

indicate that the sediment source in the area was southwest northeast direction.

Thickening of the interval is also observable in the downthrown block whereas the C4

interval become thinner in the upthrwon block due to reverse componenet of the VLE

400 Fault and erosion created by Late Eocene unconformity. Dotted line indicates well

data extend. Contour interval is 50 ft.
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Figure 4.14 Enlarged image of the dotted line area in Figure 4.13. Contour patterns

indicate that the thinning of the C4 interval in the middle of the area because of uplifting

created by the VLE 400 Fault. Most of the “C” layers eroded in the vicinity of the VLE

400 Fault and they created toplap reflection patterns through the unconformity.

Thickness values obtained from each well in this figure were used to correlate thickness

form well data. Contour interval 50 ft.
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Figure 4.15 Correlation plot of the C4 interval thickness from well and seismic data. Thickness below vertical seismic

resolution (see Appendix C) and thickness have extremely higher values were not considered in this plot (see Appendix D).
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In the VLE 196 area, four main seismic facies are recognized (Figure 4.16). The

seismic facies are better distinguished on the north-south seismic lines than the east-west

ones because of northwest-southeast oriented reverse component of the VLE 400 Fault

which made thinner the formations and created disturbed zones in this direction. Due to

lack of well data in the target formations (Misoa and Guasare), the depositional

environment of each seismic facies was interpreted using reflection amplitude,

contuinity, and configuration. Seismic stratigraphic interpretation techniques followed

Mitchum, Vail, and Sangree (1977).

Seismic facies I is characterized by low-to-high or variable amplitude and poor-

to-low continuity reflections with hummocky zones.  Reflections with poor contuinity

and chaotic zones suggest that the rapid sedimentation of Miocene-to-recent age of the

La Rosa, Lagunillas, La Puerta, and El Mirago formations. Erosion, which was created

by the Late Eocene unconformity, was most probably led to fast sedimentation of recent

formations. Seismic facies II is characterized by high amplitude, moderate-to-good

continuity reflections. Parallel-to-subparallel reflections are dominant in the siesmic

facies II and discontinuous reflections (mostly truncations) can also be seen locally. This

seismic facies represent the common reflection character of the Misoa Formation

through the VLE 196 area. Because of the coastline of the Caribbean Sea during the

Eocene time was in the vicinity of what is now the Lake Maracaibo (Bockmeulen et al.,

1983), during the Middle Eocene time the great river built a stream flowed from

southwest to northeast. It built a series of deltas, but subsidence of sea bottom was very

rapid and the successive deltas did not prograde seaward, but piled on top of each other
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Figure 4.16 Seismic facies recognized in this study and their characteristics and

geological interpretation.
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(Zamora, 1977). The reason of parallel to subparallel reflection character of the tide-

dominated deltaic sandstones of the Misoa Formation can be due to, as it stated above,

piling of sediments to each other during the Eocene times. Another explanation for this

situation can be the VLE 196 area is most probably situated in the tidal flat (delta plain)

within the sequence of the tide-dominated delta structure.

Seismic facies III is characterized by low-to-high amplitude, package of short,

irregular hummocky cliniforms. This reflection pattern is observable within the Misoa

Formation and some part of the shaly sediments of the underlying Colon and sandy

layers of the Mito Juan formations. Seismic facies III is referring to a distributary

channel fills and tidal sand ridges and lobes, which were created by deltaic sandstones of

the Misoa “C” sands. This interpretation was supported by seismic cross sections, which

were discussed in the following pages. Seismic facies IV is characterized by chaotic,

reflection free patterns which indicate the acoustic basement of the study area. Basement

consists of igneous, metamorphic, and continental clastic sediments of the Cogollo, Rio

Negro, and La Quinta formations.

To represent the seismic stratigraphy of the Misoa-Guasare interval, five seismic

sections were selected over the study area. Figure 4.17 shows the location of the seismic

sections. Figure 4.18 and 4.19 show the general reflection character of the Misoa “C”

sands over the study area. As it can be seen in these figures, the Misoa Formation is

unconformity bounded, Late Eocene unconformity on the top and the Guasare Formation

on the bottom respectively. Misoa Formation shows high amplitude, moderate-to-good

continuity reflections. These reflections are mostly parallel but they were disturbed by
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some distributary channel fill and some truncations within the formation. Wedge shaped

seismic features in Figure 4.18 and 4.19 can be corresponded to the distributary channel

fill. Scale of channel fill similar structures vary within the formation, such as 750 m to 2

km wide and 0.5 ms to 2 ms (TWTT) deep. Reflection patterns of these channels reflect

seismic facies III, which have low-to-high amplitude and hummocky reflections and

they mainly bounded and eroded by the unconformity. Carbonates of the Guasare

Formation show strong reflections and underlying unit have weak reflections because of

its high shale content.

Figure 4.20 exhibits different reflection character than the other seismic sections.

In this figure, sandy layers of the Misoa Formation have lobe shape characters with

aggragational pattern which suggest that the continuous deposition of sand layers

through the depositional dip (southwest-northeast) within the deltaic environment of

study area. In this figure, on the other hand, bounding layers (unconformity on the top

and Guasare Formation on the bottom) have almost parallel reflections relative to the

Misoa Formation and general geometry of the “C” layers were not affected by faults.

This shows that the aggradational reflections resulted from deposition other that the

structure. Erosional truncations in the Misoa Formation were also observed that they

were mainly created by the overlying unconformity.  Figure 4.21 which lies along the

depositional strike also shows some eroded channel similar structures within the Misoa

Formation. Overlying and underlying units of the formation exhibit generally flat-lying

reflections but as it can be seen in the interpreted part of the seismic section (Figure 4.21

b), a belt of dipping events forms a progradational pattern with some onlap surfaces.



79

Western side of the study area (downthrown block) represents different reflection

character which is shown in Figure 4.22. As it can be seen in this figure, Misoa sands

have high amplitude with package of irregular, hummocky cliniforms and onlapping the

underlying unconformable surface of the Guasare Formation.  Thickening of the Misoa

Formation in northwest direction resulted from the oblique movement of the VLE 400

Fault other than the depositional environment. Therefore, it cannot be concluded that the

northwest direction onlap patterns reflect the depositional axis in the study area which is

inconsistent with the results obtained from well log interpretation (see Chapter IV,

interpretation of depositional system). Eroded channel similar features also exist in the

middle part of the seismic section in Figure 4.22 but they were believed to be created by

the extensive faulting in the area.

In general, Guasare-Misoa interval in the VLE 196 area represents eroded

channel structures with internal truncations in the direction of the depositional dip

(southwest-northeast). But the absence of well logs and core data over the entire interval,

it was unable to correlate results gathered from seismic stratigraphic interpretation with

well data and represent more precise definition of the stratigraphy of the Guasare-Misoa

interval.
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Figure 4.17 Locations of the seismic lines in Figure 4.18 to Figure 4.22 on the seismic

basemap.
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Figure 4.18 (a) Seismic line A-A' (amplitude display) showing the general reflection character of the Guasare-Misoa interval.

(b) Interpreted phase display of the line A-A'. Within the Misoa Formation, eroded channel similar structures can be

observable (see Figure 4.17 for location). U: unconformity, M: Misoa F., G: Guasare F., SF: Seismic Facies
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Figure 4.19 (a) Seismic line B-B' (amplitude display) along the depositional dip (southwest-northeast) showing the stacking

pattern of the Guasare-Misoa interval. (b) Interpreted phase display of the line B-B' (see Figure 4.17 for location). U:

unconformity, M: Misoa F., G: Guasare F., SF: Seismic Facies
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Figure 4.20 (a) Seismic line C-C' (amplitude display) showing the aggradational deposition of “C” sands in the Misoa

Formation. (b) Interpreted phase display of the line C-C' (see Figure 4.17 for location). U: unconformity, M: Misoa F., G:

Guasare F., SF: Seismic Facies
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Figure 4.21 (a) Seismic line D-D' (amplitude display) along the depositional strike (southeast-northwest) showing

progradational reflection patterns within the Misoa Formation. (b) Interpreted phase display of the line D-D' (see Figure 4.17

for location). U: unconformity, M: Misoa F., G: Guasare F., SF: Seismic Facies
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Figure 4.22 (a) Seismic line E-E' (amplitude display) showing the reflection pattern of the Misoa and Guasare formations in

the west side of the area (downthrown block). (b) Interpreted phase display of the line E-E' (see Figure 4.17 for location). U:

unconformity, M: Misoa F., G: Guasare F., SF: Seismic FaciesWWWWWWWWWWWWWWWWWWWWWWWWWW
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4.2.3 Results

1) In the VLE 196 area four main seismic facies are recognized. Seismic facies I is

characterized by low-to-high or variable amplitude and poor-to-low continuity

reflections with hummocky zones.  Reflections with poor contuinity and chaotic

zones suggest that the rapid sedimentation of Miocene-to-recent age of La Rosa,

Lagunillas, La Puerta, and El Mirago formations.

2) Seismic facies II is characterized by high amplitude, moderate-to-good continuity

reflections. Parallel-to-subparallel reflections are dominant in the siesmic facies II

and discontinuous reflections (mostly truncations) can also be seen locally. This

seismic facies represent the common reflection character of the Misoa Formation

through the VLE 196 area.  Seismic facies III is characterized by low-to-high

amplitude, package of short, irregular hummocky cliniforms. This reflection pattern

is observable within the Misoa Formation and some part of the shaly sediments of

the underlying Colon and Mito Juan formations.

3) Seismic facies III is referring to a distributary channel fill and tidal sand ridges and

lobes, which were created by deltaic sandstones of the Misoa “C” sands.

4) Seismic facies IV is characterized by chaotic, reflection free patterns which indicate

the acoustic basement of the study area. Basement consists of igneous, metamorphic,

and continental clastic sediments of the Cogollo, Rio Negro, and La Quinta

formations.
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5) Some channel similar structures with distributary pattern were also observed within

the Misoa Formation but they were not continuous over the formation. Most

probable reason for their discontinuity can be the intensive faulting in the area.

6) Seismic stratigraphy of the C4 layers could not be interpreted because of the vertical

seismic resolution of the seismic data (see Appendix B and C).

7) The interval thickness of the C4 layer from seismic data reanges from 300 ft to 700 ft

and exhibits SW-NE trending contour patterns and isolated sand lobes between the

en echelon faults.
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CHAPTER V

DISCUSSION

The VLE 196 area, Block V, Lamar Field represents a complex structure because

of its previous long tectonic activity which was stated by most authors e.g. Sutton, 1946;

Burke, 1988; Lugo and Mann, 1995; and Mann and Burke, 1984. In this study, as it

stated in previous chapters, I proposed that the main deformation process created by the

VLE 400 Fault which separates the area into two main parts. The VLE 400 Fault was

interpreted as a complex left-lateral, strike-slip reverse fault (term adapted from Hill,

1947).

Dual classification of faults were explained by many authors e.g. Hill, 1947,

1959; Clark, 1943; and Crowell, 1959. Hill (1947 and 1959) stated that the “In dual

classifications of faults, both dip- and strike-separation of faults are considered. The

classification is principally geometric and gives, when both dip and strike-separation are

evidence, a three dimensional concept of the apparent displacement. The classification

could be used for both previously and newly mapped and described faults.”

Detailed interpretation of 3D seismic sections was revealed that the VLE 400

Fault appears as a left-lateral strike-slip fault in the southern part of the area but through

the north it behaves as a reverse fault because of compressional structures which are

created during the last period of deformation of the Lake Maracaibo. Kulke (1994) stated

that “The last period of deformation in the Miocene-Pliocene-Recent is characterized by

intense structural development in the area and this deformation in general related to the



89

oblique compression of the Caribbean plate with respect to the South American plate.

Open folds, minor faults, and some uplifts were formed in the post-Eocene sedimentary

rocks as well as the reactivation of the earlier structures in the Eocene and older rock

units.”

Another possibility is that the VLE 400 strike-slip fault could be inverted during

the last period of deformation, which is explained above, and gained a reverse

component. As it can be seen in Figure 2.3, the VLE 196 area located between two

syncline axes. It is believed that the occurrence of these anticlines was responsible for

the possible inversion tectonics in the study area. Lugo Lobo (1991) also stated this

situation as follows: “During the Cretaceous, extensional processes led to Cretaceous

subsidence and normal displacement along major faults as evidence by thicker

Cretaceous sections on the downthrown side of the faults. The Aptian-Albian K2 and K3

units do not have evidence of major activity along the faults, but in the Late Albian to

Early Cenomanian the VLE fault system was reactivated. This allowed deposition of a

thicker section of unit K4.”

The results that I gathered from well log interpretation to define depositional

settings of the area were consistent with the previous works. Most of the authors (e.g.,

Martin et al., 1997; Talukdar and Marcano, 1994; Gonzales and Gustavo, 1991;

Delgado, 1993; Ambrose et al., 1995; Munoz et al., 1994; Lugo and Ochoa, 1994; Link

et al., 1996; Raeuchle et al., 1997;  Carrizales et al.,  2001) stated that that Lower Misoa

strata were deposited in a tide-dominated delta setting and sediment source was from the

west or southwest. The result of this study are also indicated that the sediments in the
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VLE 196 area were deposited in tide dominated delta plain to shallow marine sediments

consisting of fluvial/distributary channel and delta front sandstones prograded southwest

to northeast (paleodip direction). This interpretation was based on log patterns of

sandstones which are upward-coarsening, blocky, and upward-fining on the gamma ray

traces, and sandbody geometry shown on the gross thickness and net sand thickness

maps.
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CHAPTER VI

CONCLUSIONS

1) The VLE 196 area, Block V, Lamar Field, represents a complex structure because of

its previous long tectonic activity.

2) The main deformation process in the area is the strike-slip movement created by the

VLE 400 Fault, a left-lateral strike-slip reverse fault, separated the area in two main

parts.

3) The trend of PDZ (principal displacement zone) is north south and dips westward.

4) Associated complementary faults have same trend with the VLE 400 Fault whereas

en echelon normal and reverse faults are oriented approximately 50 degrees to the

VLE 400 Fault and they compartment the reservoir.

5) General structural interpretation shows that the area was subjected northeast

southwest compression and the VLE 196 area situated in the restraining bend.

6) Three main reflectors in the study area are the Late Eocene unconformity, Guasare

Formation, and La Luna Formation. The unconformity is spread all over the field and

because of it was not affected by faulting, it acted as a seal and inhibited the

migration of the hydrocarbons. The Guasare and La Luna formations were affected

by faulting especially in the vicinity of the VLE 400 Fault. The VLE 400 Fault

created a significant vertical displacement of the Guasare and La Luna formations.

Vertical separation is approximately 75 m (150 ms two-way travel time) and 150 m

(250 ms two-way travel time) for Guasare and La Luna formations respectively.
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7) The major trapping mechanism in the VLE 196 area is the four-way closure of the

anticline and offset of strata created by the VLE 400 Fault.

8) C-4 interval in the Misoa sandstones were divided into three sandy and three shaly

units based on type log responses and cross-sections. In each layer sand thickness

varies but they trend through paleo dip (southwest-northeast).

9) Layer 1 is predominantly sand and interbedded with thin shaly units. Maximum

gross thickness of this layer 250 ft and average porosity 27%. Fining-upward and

blocky log responses of Layer 1 indicate delta front environment.

10) Later 3 consists of massive sand within shaly interbeds. Maximum gross thickness an

average porosity of this layer are 100 ft and 30% respectively. Log facies map of

Layer 3 has blocky, serrate, and coarsening-upward log characteristics.

11) Layer 5 is mostly sandy with shaly interbeds. Gross thickness of this layer is

approximately 150 ft and elongated to southwest northeast direction and become

thinner through to southeast. Average porosity of this layer is 30%. Layer 5 has

upward-fining log response, which is indicator of distributary channel.

12) Shay layers of C-4 strata interpreted as potential seals and they deposited in low-

energy interdistributary, and shallow marine environments. The percentage of shale

increases upward from C-5 to C-4. Shales are of variable thickness and extend and

they make up almost 40% of the C-4 interval.

13) Layer 6 at the base of the C-4 interval is most extensive shaly layer in the section and

most likely it represents a marine flooding surface which is identified in electric logs

as low resistivity and high gamma peak. In contrast, many other shaly layers have
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more sand content. Thus, the extend of shale layers as reservoir or no-flow units are

vary from layer to layer.

14) In general, all C-4 layers exhibit southeast northwest sand thickness contour patterns

in lithofacies maps, reflecting depositional control on the interval. Depositional axis

in the C-4 interval defined by more than 250 ft of gross sandstone, occur in narrow,

depositional dip parallel belts, separated by relatively sandstone-poor are consisting

less than 20 ft of gross sandstone. C-4 depositional axes coincide with blocky and

upward-fining log responses, flanked by sandstone-poor deposits exhibiting upward-

coarsening and serrate log responses.

15) The log patterns and their order of occurrence in C-4 strata suggest that the

sandstone are delta front and fluvial/distributary channel facies of delta system. This

conclusion supported by the sand-body geometry shown on net sandstone and gross

thickness maps.

16) In the VLE 196 area four main seismic facies are recognized. Seismic facies I is

characterized by low-to-high or variable amplitude and poor-to-low continuity

reflections with hummocky zones.  Reflections with poor continuity and chaotic

zones suggest that the rapid sedimentation of Miocene-to-recent age of La Rosa,

Lagunillas, La Puerta, and El Mirago formations.

17) Seismic facies II is characterized by high amplitude, moderate-to-good continuity

reflections. Parallel-to-subparallel reflections are dominant in the seismic facies II

and discontinuous reflections (mostly truncations) can also be seen locally. This

seismic facies represent the common reflection character of the Misoa Formation
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through the VLE 196 area.  Seismic facies III is characterized by low-to-high

amplitude, package of short, irregular hummocky cliniforms. This reflection pattern

is observable within the Misoa Formation and some part of the shaly sediments of

the underlying Colon and Mito Juan formations.

18) Seismic facies III is referring to a distributary channel fill and tidal sand ridges and

lobes, which were created by deltaic sandstones of the Misoa “C” sands.

19) Seismic facies IV is characterized by chaotic, reflection free patterns which indicate

the acoustic basement of the study area. Basement consists of igneous, metamorphic,

and continental clastic sediments of the Cogollo, Rio Negro, and La Quinta

formations.

20) Some channel similar structures with distributary pattern were also observed within

the Misoa Formation but they were not continuous over the formation. Most

probable reason for their discontinuity can be the intensive faulting in the area.

21) Seismic stratigraphy of the C4 layers could not be interpreted because of the vertical

seismic resolution of the seismic data (see Appendix B and C).

22) The interval thickness of the C4 layer from seismic data reanges from 300 ft to 700 ft

and exhibits SW-NE trending contour patterns and isolated sand lobes between the

en echelon faults.
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APPENDIX A

Measured depth of the top of the C-4 strata and top of the C-5 strata based on well logs.

Well ID Top C-4 (ft) Top C-5 (ft) Thickness

VLE 0096 11246 11540 294

VLE 0196 11675 11940 265

VLE 0400 11729 12053 324

VLE 0449 11074 11459 385

VLE 0504 - 11888 -

VLE 0506 11369 11655 286

VLE 0510 11258 11590 332

VLE 0516 11840 12162 322

VLE 0571 11837 12124 287

VLE 0619 12055 12277 222

VLE 0631* 12022 12347 325

VLE 0651 12102 12392 290

VLE 0674 11345 11643 298

VLE 0675 11170 11500 330

VLE 0677 11316 11601 285

VLE 0973 11460 11785 325

VLE 1004 11822 12157 335

VLE 1063* 11095 11409 314

VLE 1101 11208 11522 314

VLE 1130 11347 11707 360

VLE 1139 11205 11567 362

VLE 1140 11818 12082 264

VLE 1148 11823 - -

VLE 1155 11352 11669 317

                      (*) Type Log
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APPENDIX B

Measured depth and average thickness of the C-4 layers based on well logs.

Well ID Layer 1
Top (ft)

Layer 2
Top (ft)

Layer 3
Top (ft)

Layer 4
Top (ft)

Layer 5
Top (ft)

Layer 6
Top (ft)

VLE 0096 11246 11290 11323 11415 11424 11516
VLE 0196 11675 11734 11800 11841 11848 -
VLE 0400 11729 - 11837 11884 11919 12010
VLE 0449 11074 11178 11206 11290 11310 -
VLE 0506 11369 11427 11441 11519 11549 11644
VLE 0510 11258 11338 11360 11446 11478 11564
VLE 0516 11840 11899 11940 12009 12020 12101
VLE 0571 11837 11915 11927 11978 11999 12094
VLE 0619 12055 12100 12109 12183 12211 12256
VLE 0631* 12022 12074 12101 12193 12213 12309
VLE 0651 12102 12161 12177 12233 12251 12358
VLE 0674 11345 11408 11426 11495 11513 11573
VLE 0675 11170 11236 11259 11304 11313 11388
VLE 0677 11316 11395 11418 11450 11458 11567
VLE 0973 11460 11520 11586 11630 11667 11739
VLE 1004 11822 11910 11964 12008 12026 12117
VLE 1063* 11095 11169 11196 11270 11280 11379
VLE 1101 11208 11310 11333 11389 11402 11473
VLE 1130 11347 11438 11451 11554 11576 11671
VLE 1139 11205 11324 11365 11447 11468 11546
VLE 1140 11818 11880 11889 11965 11973 12048
VLE 1148 11823 11937 11962 12045 12058 12130
VLE 1155 11352 11409 11437 11490 11530 11592
Average

Thickness (ft) 73 28 66 19 83 41

      (*) Type Log
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APPENDIX C

Determination of Vertical Seismic Resolution

Dominant frequency for the Misoa sadns in VLE 196 area calculated extracting wavelet

from seismic in-line 750 using SynPak tool of Kingdom Suite software. Two dominant

frequencies were determined both for Misoa interval and C-4 strata.

Frequency spectrum of the Misoa sands.

In-line: 750

Start time: 2.731

End time: 3.064

Starting trace: 437

Ending trace: 466
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Frequency spectrum of the C-4 strata.

In-line: 750

Start time: 2.869

End time: 3.005

Starting trace: 413

Ending trace: 498

The dominant wavelength of seismic waves given by 
f
�

� �  where � is the velocity and

� is the dominant frequency. From above figures, dominant frequency is approximately

20 Hz and seismic velocity of the Misoa sands was calculated as 8600 ft/s, then � is 430

ft and the acceptable vertical resolution for seismic data is approximately (�/4) 107 ft.
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APPENDIX D

     (*) Values that were not considered for seismic-well log correlation plot.

     TWTT: Two way travel time

Well ID Thickness values for C4 TWTT values for C4 Thickness values for C4 
interval from well (ft)  interval isochron map (s) interval isopach map (ft)

VLE 0096 294 0.022 18*
VLE 0196 265 0.022 70*
VLE 0400 324 0.007 295
VLE 0449 385 0.038 113*
VLE 0506 286 0.027 111
VLE 0510 332 0.067 597*
VLE 0516 322 0.076 300
VLE 0571 287 0.037 77*
VLE 0619 222 0.032 191
VLE 0631 325 0.070 293
VLE 0651 290 0.005 115
VLE 0674 298 0.076 187
VLE 0675 330 0.067 31*
VLE 0677 285 0.022 136
VLE 0973 325 0.087 384
VLE 1004 335 0.076 297
VLE 1063 314 0.038 242
VLE 1101 314 0.028 232
VLE 1130 360 0.007 152*
VLE 1139 362 0.067 337
VLE 1140 264 0.035 67*
VLE 1155 317 0.076 187
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APPENDIX E

The geometry and terminology for right and left bends and stepovers. Large arrows

show relative shear on the fault. Pairs of dashed arrows indicate the extension or

contraction across the bends and stepovers (Twiss and Moores, 1992).
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